Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39204356

RESUMO

Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.

2.
Pharmaceutics ; 15(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37376043

RESUMO

This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.

3.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 52-63, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300689

RESUMO

Dysmenorrhea is the combination of cramps and pain associated with the menstrual period, and the symptoms affect at least 30% of women worldwide. Tolerance to symptoms depends on each person's pain threshold; however, dysmenorrhea seriously affects daily activities and chronically reduces the quality of life. Some dysmenorrhea cases even require hospitalization due to unbearable symptoms of severe pain. Dysmenorrhea is an underestimated affectation and remains even in different first-world countries as a taboo subject, promoted by the establishment of an apparent policy of gender equality. A person with primary or secondary dysmenorrhea requires medical assistance in choosing the best treatment and an integral approach. This review intends to demonstrate the impact of dysmenorrhea on quality of life. We describe the pathophysiology of this disorder from a molecular point of view and perform a comprehensive compilation and analysis of the most critical findings in the therapeutic management of dysmenorrhea. Likewise, we propose an interdisciplinary approach to the phenomenon of dysmenorrhea at the cellular level in a concise way and the botanical, pharmacological, and medical applications for its management. Since dysmenorrhea symptoms can vary between individuals, medical treatment cannot be generalized and depends on each patient. Therefore, we hypothesized that a suitable strategy could result from the combination of pharmacological therapy aided by a non-pharmacological approach.


Assuntos
Dismenorreia , Qualidade de Vida , Feminino , Humanos , Dismenorreia/tratamento farmacológico , Medição da Dor
4.
J Biol Eng ; 17(1): 35, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221599

RESUMO

The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.

5.
Int J Dermatol ; 61(7): 783-791, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34403497

RESUMO

The presence of lesions in visible areas of skin may cause emotional troubles in patients, including low self-worth, embarrassment, sorrow, and social isolation. Those alterations may predispose to psychiatric disorders such as anxiety, depression, and even suicidal ideation, severely affecting patients' health state and quality of life (QoL). In this article, we focus on dermatologic patients that present with secondary mental health alterations. Thus, we offer a detailed description of mental disorders observed in patients with acne vulgaris, atopic dermatitis, psoriasis, ichthyosis, vitiligo, and hidradenitis suppurativa. Moreover, we point out the relationship between the severity of the cutaneous symptoms with mental illnesses and QoL decline. Our objective was to highlight the importance of mental health care for patients with skin diseases. The impact of skin alterations on the mental health of dermatological patients should be a central concern. Likewise, the timely identification and treatment of mental disorders are essential for the comprehensive management of these skin diseases.


Assuntos
Dermatite Atópica , Hidradenite Supurativa , Transtornos Mentais , Psoríase , Dermatite Atópica/complicações , Hidradenite Supurativa/complicações , Humanos , Transtornos Mentais/complicações , Saúde Mental , Psoríase/complicações , Qualidade de Vida/psicologia
6.
Phytother Res ; 35(7): 3533-3557, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33590924

RESUMO

Oxidative stress is the imbalance between reactive oxygen species (ROS) production, and accumulation and the ability of a biological system to clear these reactive products. This imbalance leads to cell and tissue damage causing several disorders in human body, such as neurodegeneration, metabolic problems, cardiovascular diseases, and cancer. Cucurbitaceae family consists of about 100 genera and 1,000 species of plants including mostly tropical, annual or perennial, monoecious, and dioecious herbs. The plants from Cucurbita species are rich sources of phytochemicals and act as a rich source of antioxidants. The most important phytochemicals present in the cucurbits are cucurbitacins, saponins, carotenoids, phytosterols, and polyphenols. These bioactive phyto-constituents are responsible for the pharmacological effects including antioxidant, antitumor, antidiabetic, hepatoprotective, antimicrobial, anti-obesity, diuretic, anti-ulcer activity, and antigenotoxic. A wide number of in vitro and in vivo studies have ascribed these health-promoting effects of Cucurbita genus. Results of clinical trials suggest that Cucurbita provides health benefits for diabetic patients, patients with benign prostate hyperplasia, infertile women, postmenopausal women, and stress urinary incontinence in women. The intend of the present review is to focus on the protective role of Cucurbita spp. phytochemicals on oxidative stress-related disorders on the basis of preclinical and human studies. The review will also give insights on the in vitro and in vivo antioxidant potential of the Cucurbitaceae family as a whole.


Assuntos
Antioxidantes , Cucurbita , Cucurbitaceae , Compostos Fitoquímicos , Antioxidantes/farmacologia , Cucurbita/química , Cucurbitaceae/química , Humanos , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
7.
Membranes (Basel) ; 10(9)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872576

RESUMO

The blood-brain barrier (BBB) is a sophisticated and very selective dynamic interface composed of endothelial cells expressing enzymes, transport systems, and receptors that regulate the passage of nutrients, ions, oxygen, and other essential molecules to the brain, regulating its homeostasis. Moreover, the BBB performs a vital function in protecting the brain from pathogens and other dangerous agents in the blood circulation. Despite its crucial role, this barrier represents a difficult obstacle for the treatment of brain diseases because many therapeutic agents cannot cross it. Thus, different strategies based on nanoparticles have been explored in recent years. Concerning this, chitosan-decorated nanoparticles have demonstrated enormous potential for drug delivery across the BBB and treatment of Alzheimer's disease, Parkinson's disease, gliomas, cerebral ischemia, and schizophrenia. Our main objective was to highlight the high potential of chitosan adsorption to improve the penetrability through the BBB of nanoformulations for diseases of CNS. Therefore, we describe the BBB structure and function, as well as the routes of chitosan for crossing it. Moreover, we define the methods of decoration of nanoparticles with chitosan and provide numerous examples of their potential utilization in a variety of brain diseases. Lastly, we discuss future directions, mentioning the need for extensive characterization of proposed nanoformulations and clinical trials for evaluation of their efficacy.

8.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 191-198, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583795

RESUMO

Human skin possesses an essential function in the maintenance of individuals' health. However, it may undergo a variety of lesions that produce wounds of distinct severity. In this respect, instantly after any skin wound, the process of tissue regeneration and repair initiates. Nevertheless, diverse factors can delay this process, including bacterial infections, nutritional status, age, hypoxia, chronic diseases, necrosis, and vascular and arterial diseases. Thus, wound dressings are frequently used to improve wound healing. Those wound dressings are fabricated with diverse materials, which confer them different properties. In this regard, hyaluronic acid is a natural polysaccharide widely distributed in extracellular matrices of mammal tissues, which possesses remarkable attributes in terms of biocompatibility, biodegradability, and low cost. Moreover, hyaluronic acid exhibits several beneficial effects on wound healing, such as the decrease of inflammatory processes, regulation of tissue remodeling, and enhancement of angiogenesis. Therefore, in recent years, there is growing attention in this polysaccharide for the design and manufacture of novel wound dressings, which have shown encouraging properties. Here, we describe the different approaches of hyaluronic acid for the production of wound dressings, encompassing hydrogels, films, scaffolds, foams, topical formulations, and nanoformulations, as well as its beneficial effects on wound healing. Finally, we discuss perspectives about the use of hyaluronic acid in wound dressings.


Assuntos
Bandagens , Ácido Hialurônico/uso terapêutico , Ferimentos e Lesões/terapia , Animais , Preparações de Ação Retardada/farmacologia , Humanos , Ácido Hialurônico/química , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos
9.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 199-207, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583796

RESUMO

Controlled release is of vital relevance for many drugs; thus, there is a keen interest in materials that can improve the release profiles of formulations administered via buccal, transdermal, ophthalmic, vaginal, and nasal. The desirable effects of those materials include the improvement of stability, adhesiveness, solubility, and retention time. Hence, different synthetic and natural polymers are utilized to achieve these objectives. In this respect, xanthan gum is an anionic polysaccharide that can be obtained from Xanthomonas bacteria. It is a natural polymer broadly employed in numerous food products, lotions, shampoos, and dermatological articles. Furthermore, due to its physicochemical features, xanthan gum is growingly utilized for the development and improvement of drug delivery systems. In this regard, encouraging findings have been revealed by recent formulations for pharmaceutical applications, including antiviral carriers, antibacterial transporters, transdermal patches, vaginal formulations, and anticancer medications. In this article, we perform a concise description of the chemical properties of xanthan gum and its role as a modifier of drug release. Furthermore, we present an outlook of the state of the art of research focused on the utilization of xanthan gum in varied pharmaceutical formulations, which include tablets, films, hydrogels, and nanoformulations. Finally, we discuss some perspectives about the use of xanthan gum in these formulations.


Assuntos
Liberação Controlada de Fármacos , Polissacarídeos Bacterianos/química , Animais , Preparações de Ação Retardada , Formas de Dosagem , Humanos , Hidrogéis/química , Nanopartículas/química
10.
J Clin Med ; 9(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164244

RESUMO

Cardiovascular diseases (CVD) compromises a group of heart and blood vessels disorders with high impact on human health and wellbeing. Curcumin (CUR) have demonstrated beneficial effects on these group of diseases that represent a global burden with a prevalence that continues increasing progressively. Pre- and clinical studies have demonstrated the CUR effects in CVD through its anti-hypercholesterolemic and anti-atherosclerotic effects and its protective properties against cardiac ischemia and reperfusion. However, the CUR therapeutic limitation is its bioavailability. New CUR nanomedicine formulations are developed to solve this problem. The present article aims to discuss different studies and approaches looking into the promising role of nanotechnology-based drug delivery systems to deliver CUR and its derivatives in CVD treatment, with an emphasis on their formulation properties, experimental evidence, bioactivity, as well as challenges and opportunities in developing these systems.

11.
Arch Dermatol Res ; 312(4): 237-248, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31624898

RESUMO

Inherited ichthyoses are a group of etiologically heterogeneous diseases that affect the function of the skin and that are classified as syndromic and non-syndromic entities. Irrespective of the type, all these disorders are generally produced by mutations in genes involved in a variety of cellular functions in the skin. These mutations lead to disruption of the stratum corneum and impairment of the skin barrier, producing clinical features such as hyperkeratosis, skin scaling, erythema, fissures, pruritus, inflammation, and skin pain. Despite advances in the knowledge of the pathogenesis of ichthyoses, there is, to our knowledge, no definitive cure for skin manifestations, and current treatments consist of moisturizers, emollients, and keratolytic agents. In this respect, the development of new formulations based on nanotechnology could be useful to enhance their therapeutic effectiveness. In this article, we provide a comprehensive description of pharmacological treatments for cutaneous manifestations in patients with inherited ichthyosis and discuss novel approaches with therapeutic potential for this purpose. Moreover, we offer an overview of toxicity concerns related to these treatments.


Assuntos
Fármacos Dermatológicos/administração & dosagem , Emolientes/administração & dosagem , Ictiose/tratamento farmacológico , Ceratolíticos/administração & dosagem , Retinoides/administração & dosagem , Administração Cutânea , Administração Oral , Quimioterapia Combinada/métodos , Humanos , Ictiose/genética , Ictiose/patologia , Ictiose/fisiopatologia , Mutação , Pele/efeitos dos fármacos , Pele/patologia , Pele/fisiopatologia , Perda Insensível de Água/efeitos dos fármacos , Perda Insensível de Água/fisiologia
12.
Pharmaceutics ; 11(8)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382553

RESUMO

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient's discomfort and the risk of altering the formation of the new epithelium.

13.
Biomolecules ; 9(2)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30743984

RESUMO

Curcumin is a polyphenol that is obtained from Curcuma longa and used in various areas, such as food and textiles. Curcumin has important anti-inflammatory and antioxidant properties that allow it to be applied as treatment for several emerging pathologies. Remarkably, there are an elevated number of publications deriving from the terms "curcumin" and "curcumin brain diseases", which highlights the increasing impact of this polyphenol and the high number of study groups investigating their therapeutic actions. However, its lack of solubility in aqueous media, as well as its poor bioavailability in biological systems, represent limiting factors for its successful application. In this review article, the analysis of its chemical composition and the pivotal mechanisms for brain applications are addressed in a global manner. Furthermore, we emphasize the use of nanoparticles with curcumin and the benefits that have been reached as an example of the extensive advances in this area of health.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Encefalopatias/tratamento farmacológico , Curcumina/uso terapêutico , Nanopartículas/química , Animais , Anti-Inflamatórios não Esteroides/química , Curcuma/química , Curcumina/química , Humanos , Estrutura Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA