Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 336: 122121, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670753

RESUMO

This study aimed to modify chitosan (CS) by gamma irradiation and use it as a surface coating of nanoparticles (NPs) fabricated of poly lactic-co-glycolic acid (PLGA) to create mostly biocompatible nanosystems that can transport drugs to neurons. Gamma irradiation produced irradiated CS (CSγ) with a very low molecular weight (15.2-19.2 kDa). Coating NPs-PLGA with CSγ caused significant changes in their Z potential, making it slightly positive (from -21.7 ± 2.8 mV to +7.1 ± 2.3 mV) and in their particle size (184.4 0.4 ± 7.9 nm to 211.9 ± 14.04 nm). However, these changes were more pronounced in NPs coated with non-irradiated CS (Z potential = +54.0 ± 1.43 mV, size = 348.1 ± 16.44 nm). NPs coated with CSγ presented lower cytotoxicity and similar internalization levels in SH-SY5Y neuronal cells than NPs coated with non-irradiated CS, suggesting higher biocompatibility. Highly biocompatible NPs are desirable as nanocarriers to deliver drugs to the brain, as they help maintain the structure and function of the blood-brain barrier. Therefore, the NPs developed in this study could be evaluated as drug-delivery systems for treating brain diseases.


Assuntos
Quitosana , Nanopartículas , Neurônios , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Quitosana/química , Humanos , Nanopartículas/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Raios gama
2.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067163

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant inherited disease characterized by progressive ataxia and retinal degeneration. SCA7 belongs to a group of neurodegenerative diseases caused by an expanded CAG repeat in the disease-causing gene, resulting in aberrant polyglutamine (polyQ) protein synthesis. PolyQ ataxin-7 is prone to aggregate in intracellular inclusions, perturbing cellular processes leading to neuronal death in specific regions of the central nervous system (CNS). Currently, there is no treatment for SCA7; however, a promising approach successfully applied to other polyQ diseases involves the clearance of polyQ protein aggregates through pharmacological activation of autophagy. Nonetheless, the blood-brain barrier (BBB) poses a challenge for delivering drugs to the CNS, limiting treatment effectiveness. This study aimed to develop a polymeric nanocarrier system to deliver therapeutic agents across the BBB into the CNS. We prepared poly(lactic-co-glycolic acid) nanoparticles (NPs) modified with Poloxamer188 and loaded with rapamycin to enable NPs to activate autophagy. We demonstrated that these rapamycin-loaded NPs were successfully taken up by neuronal and glial cells, demonstrating high biocompatibility without adverse effects. Remarkably, rapamycin-loaded NPs effectively cleared mutant ataxin-7 aggregates in a SCA7 glial cell model, highlighting their potential as a therapeutic approach to fight SCA7 and other polyQ diseases.


Assuntos
Ataxias Espinocerebelares , Humanos , Ataxina-7/genética , Ataxina-7/metabolismo , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Neurônios/metabolismo , Neuroglia/metabolismo , Sirolimo
3.
J Biol Eng ; 17(1): 64, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845737

RESUMO

Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.

4.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 24-27, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37715439

RESUMO

In recent years, increasing interest has been paid to using antibody-based therapies for clinical applications. However, it is unclear whether recombinant antibodies can be combined with other scientific approaches to generate innovative solutions for mitigating severe acute respiratory syndrome coronavirus 2. In this context, the increase in this virus transmission, the number of infected people, and the interaction between social and biological processes have led to a syndemic, exacerbating the public health problem. Here, we argue about recent advances in recombinant antibody strategies and the perspective of using them to face this syndemic. Thus, the most promising methods in sample readiness, potency, and reduction of manufacturing time frame have been highlighted.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Sindemia , Saúde Pública
5.
Cancer Cell Int ; 23(1): 180, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633886

RESUMO

Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.

6.
Int J Cosmet Sci ; 45(6): 699-724, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37402111

RESUMO

The term biopolymer refers to materials obtained by chemically modifying natural biological substances or producing them through biotechnological processes. They are biodegradable, biocompatible and non-toxic. Due to these advantages, biopolymers have wide applications in conventional cosmetics and new trends and have emerged as essential ingredients that function as rheological modifiers, emulsifiers, film-formers, moisturizers, hydrators, antimicrobials and, more recently, materials with metabolic activity on skin. Developing approaches that exploit these features is a challenge for formulating skin, hair and oral care products and dermatological formulations. This article presents an overview of the use of the principal biopolymers used in cosmetic formulations and describes their sources, recently derived structures, novel applications and safety aspects of the use of these molecules.


Le terme biopolymère fait référence aux matériaux obtenus par modification chimique des substances biologiques naturelles ou ceux qui surviennent des processus biotechnologiques. Ils sont biodégradables, biocompatibles, et non-toxiques. Du à leur avantages, les biopolymères ont de larges applications dans les cosmétiques conventionnels ainsi que dans les nouvelles tendances, et se placent comme des ingrédients essentiels qui peut être utilise comme modificateurs rhéologiques, émulsifiants, producteurs de films, humectants, hydratants, antimicrobiens, et, plus récemment, comme matériaux avec activité métabolique sur la peau. Le développement d'approches compte tenu de ces caractéristiques constitue un défi pour la création de produits de soins capillaires, dermatologiques et buccodentaires. Cet article présente une vision sur l'utilisation des principaux biopolymères dans les produits cosmétiques, et décrit leurs sources, leur structures dérivées, les nouvelles applications, ainsi que les aspects de sécurité lies à leur utilisation comme molécules cosmétiques.


Assuntos
Cosméticos , Biopolímeros/química , Emulsificantes
7.
Pharmaceutics ; 15(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37514100

RESUMO

Wound healing is a complex process that involves restoring the structure of damaged tissues through four phases: hemostasis, inflammation, proliferation, and remodeling. Wound dressings are the most common treatment used to cover wounds, reduce infection risk and the loss of physiological fluids, and enhance wound healing. Despite there being several types of wound dressings based on different materials and fabricated through various techniques, polymeric films have been widely employed due to their biocompatibility and low immunogenicity. Furthermore, they are non-invasive, easy to apply, allow gas exchange, and can be transparent. Among different methods for designing polymeric films, solvent casting represents a reliable, preferable, and highly used technique due to its easygoing and relatively low-cost procedure compared to sophisticated methods such as spin coating, microfluidic spinning, or 3D printing. Therefore, this review focuses on the polymeric dressings obtained using this technique, emphasizing the critical manufacturing factors related to pharmaceuticals, specifically discussing the formulation variables necessary to create wound dressings that demonstrate effective performance.

8.
Front Pharmacol ; 14: 1206334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346293

RESUMO

Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.

9.
J Biol Eng ; 17(1): 21, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941601

RESUMO

As an emerging science, tissue engineering and regenerative medicine focus on developing materials to replace, restore or improve organs or tissues and enhancing the cellular capacity to proliferate, migrate and differentiate into different cell types and specific tissues. Renewable resources have been used to develop new materials, resulting in attempts to produce various environmentally friendly biomaterials. Poly (lactic acid) (PLA) is a biopolymer known to be biodegradable and it is produced from the fermentation of carbohydrates. PLA can be combined with other polymers to produce new biomaterials with suitable physicochemical properties for tissue engineering applications. Here, the advances in modified PLA as tissue engineering materials are discussed in light of its drawbacks, such as biological inertness, low cell adhesion, and low degradation rate, and the efforts conducted to address these challenges toward the design of new enhanced alternative biomaterials.

10.
Polymers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679143

RESUMO

The increment in water pollution due to the massive development in the industrial sector is a worldwide concern due to its impact on the environment and human health. Therefore, the development of new and sustainable alternatives for water remediation is needed. In this context, aerogels present high porosity, low density, and a remarkable adsorption capacity, making them candidates for remediation applications demonstrating high efficiency in removing pollutants from the air, soil, and water. Specifically, polymer-based aerogels could be modified in their high surface area to integrate functional groups, decrease their hydrophilicity, or increase their lipophilicity, among other variations, expanding and enhancing their efficiency as adsorbents for the removal of various pollutants in water. The aerogels based on natural polymers such as cellulose, chitosan, or alginate processed by different techniques presented high adsorption capacities, efficacy in oil/water separation and dye removal, and excellent recyclability after several cycles. Although there are different reviews based on aerogels, this work gives an overview of just the natural biopolymers employed to elaborate aerogels as an eco-friendly and renewable alternative. In addition, here we show the synthesis methods and applications in water cleaning from pollutants such as dyes, oil, and pharmaceuticals, providing novel information for the future development of biopolymeric-based aerogel.

11.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203252

RESUMO

The emergence of bacterial strains displaying resistance to the currently available antibiotics is a critical global concern. These resilient bacteria can form biofilms that play a pivotal role in the failure of bacterial infection treatments as antibiotics struggle to penetrate all biofilm regions. Consequently, eradicating bacteria residing within biofilms becomes considerably more challenging than their planktonic counterparts, leading to persistent and chronic infections. Among various approaches explored, essential oils loaded in nanoparticles based on biopolymers have emerged, promising strategies that enhance bioavailability and biological activities, minimize side effects, and control release through regulated pharmacokinetics. Different available reviews analyze nanosystems and essential oils; however, usually, their main goal is the analysis of their antimicrobial properties, and progress in biofilm combat is rarely discussed, or it is not the primary objective. This review aims to provide a global vision of biofilm conformation and describes mechanisms of action attributed to each EO. Furthermore, we present a comprehensive overview of the latest developments in biopolymeric nanoparticles research, especially in chitosan- and zein-based nanosystems, targeting multidrug-resistant bacteria in both their sessile and biofilm forms, which will help to design precise strategies for combating biofilms.


Assuntos
Nanopartículas , Óleos Voláteis , Antibacterianos/farmacologia , Biofilmes , Disponibilidade Biológica
12.
RSC Adv ; 12(34): 21713-21724, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36043115

RESUMO

The search for materials and process parameters capable of generating hydrogels for soft tissue engineering applications, based on an experimental design strategy that allows the evaluation of several factors involved in their development and performance, has greatly increased. Nevertheless, the fabrication technique can influence their mechanical properties, swelling, crystallinity, and even their susceptibility to contamination by microorganisms, compromising their performance within the tissue or organ. This study aimed to evaluate the influence of the freeze/thaw technique on different characteristics of polyvinyl alcohol-xanthan gum hydrogel. Methods: this research analyzed the critical variables of the freeze/thaw process through a systematic study of a 2 k factorial design of experiments, such as the proportion and concentration of polymers, freezing time and temperature, and freeze/thaw cycles. Additionally, physicochemical analysis, susceptibility to bacterial growth, and cell viability tests were included to approximate its cytotoxicity. The optimized hydrogel consisted of polyvinyl alcohol and xanthan gum at a 95 : 5 ratio, polymer mixture concentration of 15%, and 12 h of freezing with three cycles of freeze/thaw. The hydrogel was crystalline, flexible, and resistant, with tensile strengths ranging from 9 to 87 kPa. The hydrogel was appropriate for developing scaffolds for soft tissue engineering such as the cardiac and skeletal muscle, dermis, thyroid, bladder, and spleen. Also, the hydrogel did not expose an in vitro cytotoxic effect, rendering it a candidate for biomedical applications.

13.
Oxid Med Cell Longev ; 2022: 5766199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509832

RESUMO

Pesticides have been used in agricultural activity for decades because they represent the first defense against pathogens, harmful insects, and parasitic weeds. Conventional pesticides are commonly employed at high dosages to prevent their loss and degradation, guaranteeing effectiveness; however, this results in a large waste of resources and significant environmental pollution. In this regard, the search for biocompatible, biodegradable, and responsive materials has received greater attention in the last years to achieve the obtention of an efficient and green pesticide formulation. Nanotechnology is a useful tool to design and develop "nanopesticides" that limit pest degradation and ensure a controlled release using a lower concentration than the conventional methods. Besides different types of nanoparticles, polymeric nanocarriers represent the most promising group of nanomaterials to improve the agrochemicals' sustainability due to polymers' intrinsic properties. Polymeric nanoparticles are biocompatible, biodegradable, and suitable for chemical surface modification, making them attractive for pesticide delivery. This review summarizes the current use of synthetic and natural polymer-based nanopesticides, discussing their characteristics and their most common design shapes. Furthermore, we approached the instability phenomena in polymer-based nanopesticides and strategies to avoid it. Finally, we discussed the environmental risks and future challenges of polymeric nanopesticides to present a comprehensive analysis of this type of nanosystem.


Assuntos
Nanopartículas , Nanoestruturas , Praguicidas , Nanopartículas/química , Nanotecnologia/métodos , Polímeros
14.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 101-105, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34817361

RESUMO

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders worldwide. It is caused by the degeneration of dopaminergic neurons from the substantia nigra pars compacta. This neuronal loss causes the dopamine deficiency that leads to a series of functional changes within the basal ganglia, producing motor control abnormalities. L-DOPA is considered the gold standard for PD treatment, and it may alleviate its clinical manifestations for some time. However, its prolonged administration produces tolerance and several severe side effects, including dyskinesias and gastrointestinal disorders. Thus, there is an urgent need to find effective medications, and current trends have proposed some natural products as emerging options for this purpose. Concerning this, curcumin represents a promising bioactive compound with high therapeutic potential. Diverse studies in cellular and animal models have suggested that curcumin could be employed for the treatment of PD. Therefore, the objective of this narrative mini-review is to present an overview of the possible therapeutic effects of curcumin and the subjacent molecular mechanisms. Moreover, we describe several possible nanocarrier-based approaches to improve the bioavailability of curcumin and enhance its biological activity.


Assuntos
Encéfalo/efeitos dos fármacos , Curcumina/administração & dosagem , Nanopartículas/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Curcumina/química , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Glutationa Peroxidase/metabolismo , Humanos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos
15.
Front Pharmacol ; 12: 704197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483907

RESUMO

In the last decades, the search for natural products with biological applications as alternative treatments for several inflammatory diseases has increased. In this respect, terpenes are a family of organic compounds obtained mainly from plants and trees, such as tea, cannabis, thyme, and citrus fruits like lemon or mandarin. These molecules present attractive biological properties such as analgesic and anticonvulsant activities. Furthermore, several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines for example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. Thus, due to various anti-inflammatory drugs provoking side effects, the search and analysis of novel therapeutics treatments are attractive. In this review, the analysis of terpenes' chemical structure and their mechanisms in anti-inflammatory functions are addressed. Additionally, we present a general analysis of recent investigations about their applications as an alternative treatment for inflammatory diseases. Furthermore, we focus on terpenes-based nanoformulations and employed dosages to offer a global perspective of the state-of-the-art.

16.
Pharmaceutics ; 13(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34371710

RESUMO

Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.

17.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916823

RESUMO

Nanoparticles possess a huge potential to be employed in numerous biomedical purposes; their applications may include drug delivery systems, gene therapy, and tissue engineering. However, the in vivo use in biomedical applications requires that nanoparticles exhibit sterility. Thus, diverse sterilization techniques have been developed to remove or destroy microbial contamination. The main sterilization methods include sterile filtration, autoclaving, ionizing radiation, and nonionizing radiation. Nonetheless, the sterilization processes can alter the stability, zeta potential, average particle size, and polydispersity index of diverse types of nanoparticles, depending on their composition. Thus, these methods may produce unwanted effects on the nanoparticles' characteristics, affecting their safety and efficacy. Moreover, each sterilization method possesses advantages and drawbacks; thus, the suitable method's choice depends on diverse factors such as the formulation's characteristics, batch volume, available methods, and desired application. In this article, we describe the current sterilization methods of nanoparticles. Moreover, we discuss the advantages and drawbacks of these methods, pointing out the changes in nanoparticles' biological and physicochemical characteristics after sterilization. Our main objective was to offer a comprehensive overview of terminal sterilization processes of nanoparticles for biomedical applications.


Assuntos
Tecnologia Biomédica , Nanopartículas/química , Esterilização , Filtração , Radiação Ionizante
18.
J Pharm Pharm Sci ; 23: 314-332, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33751927

RESUMO

Elastin is one of the main components of the extracellular matrix; it provides resistance and elasticity to a variety of tissues and organs of the human body, besides participating in cellular signaling. On the other hand, elastin-derived peptides are synthetic biopolymers with a similar conformation and structure to elastin, but these possess the advantage of solubility in aqueous mediums. Due to their biological activities and physicochemical properties, elastin and related peptides may be applied as biomaterials to develop diverse biomedical devices, including scaffolds, hydrogels, and drug delivery systems for tissue engineering. Likewise, the combination of elastin with natural or synthetic polymers has demonstrated to improve the mechanical properties of biomedical products and drug delivery systems. Here we comprehensively describe the physicochemical properties and physiological functions of elastin. Moreover, we offer an overview of the use of elastin and its derivative polymers as biomaterials to develop scaffolds and hydrogels for tissue engineering. Finally, we discuss some perspectives on the employment of these biopolymers to fabricate new biomedical products.


Assuntos
Materiais Biocompatíveis/química , Elastina/química , Sistemas de Liberação de Medicamentos , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Peptídeos/química , Engenharia Tecidual
19.
Mater Sci Eng C Mater Biol Appl ; 105: 110142, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546345

RESUMO

Commonly reported decellularization protocols for trachea may take up from several weeks to months in order to remove the cellular materials. Two years ago, we significantly reduced the time of decellularization trachea process using trypsin. Despite the positive outcome, the protocol was useful to produce 5 cm graft length, an unsuitable length graft for most patients with tracheal disorders. In this work we improved the decellularization procedure for longer sections up to 10 cm without considerable extension in the necessary time process (2 weeks). Herein, for the first time, we completely describe and characterize the process for pig tracheal bioactive scaffolds. Histological and molecular biology analysis demonstrated effective removal of cellular components and nuclear material, which was also confirmed by the Immunohistochemical (IHC) analysis of the major histocompatibility complexes (MHCs) and DNA stain by 4'-6-diamidino-2-phenylindole (DAPI). The images and data obtained from scanning electron microscopy (SEM) and thermal analysis showed conservation of the hierarchical structures of the tracheal extracellular matrix (ECM), the biomechanical tests showed that decellularization approach did not lead to a significant alteration on the mechanical properties. In this paper, we demonstrate that the proposed cyclical-decellularization protocol allowed us to obtain a non-immunological 10 cm natural tracheal scaffold according to the in vivo immunological assessment. Furthermore, the recellularization of the matrix was successfully achieved by demonstrating first-stage cellular differentiation from stem cells to chondrocytes expressed by the SOX9 transcription factor; this organ-engineered tracheal matrix has the potential to act as a suitable template for organ regeneration.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais/química , Traqueia/citologia , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Matriz Extracelular/química , Humanos , Masculino , Camundongos , Suínos , Traqueia/ultraestrutura , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA