Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Physiol Nutr Metab ; 46(8): 994-1003, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34315281

RESUMO

Maximal oxygen consumption (V̇O2max) is impaired in heart (HTx), kidney (KTx), and liver (LTx) transplanted recipients and the contribution of the cardiovascular, central, and peripheral (muscular) factors in affecting V̇O2max improvement after endurance training (ET) has never been quantified in these patients. ET protocols involving single leg cycling (SL) elicit larger improvements of the peripheral factors affecting O2 diffusion and utilization than the double leg (DL) cycling ET. Therefore, this study aimed to compare the effects of SL-ET vs DL-ET on V̇O2max. We determined the DL-V̇O2max and maximal cardiac output before and after 24 SL-ET vs DL-ET sessions on 33 patients (HTx = 13, KTx = 11 and LTx = 9). The DL-V̇O2max increased by 13.8% ± 8.7 (p < 0.001) following the SL-ET, due to a larger maximal O2 systemic extraction; meanwhile, V̇O2max in DL-ET increased by 18.6% ± 12.7 (p < 0.001) because of concomitant central and peripheral adaptations. We speculate that in transplanted recipients, SL-ET is as effective as DL-ET to improve V̇O2max and that the impaired peripheral O2 extraction and/or utilization play an important role in limiting V̇O2max in these types of patients. Novelty: SL-ET increases V̇O2max in transplanted recipients because of improved peripheral O2 extraction and/or utilization. SL-ET is as successful as DL-ET to improve the cardiorespiratory fitness in transplanted recipients. The model of V̇O2max limitation indicates the peripheral factors as a remarkable limitation to the V̇O2max in these patients.


Assuntos
Composição Corporal/fisiologia , Treino Aeróbico/métodos , Músculos/fisiologia , Consumo de Oxigênio/fisiologia , Transplantados/estatística & dados numéricos , Adaptação Fisiológica/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resistência Física/fisiologia
2.
J Appl Physiol (1985) ; 128(3): 534-544, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971475

RESUMO

Near-infrared spectroscopy (NIRS) has been utilized as a noninvasive method to evaluate skeletal muscle mitochondrial function in humans, by calculating muscle V̇o2 (V̇o2m) recovery (off-) kinetics following short light-intensity plantar flexion exercise. The aim of the present study was to determine V̇o2m off- kinetics following standard cycle ergometer exercise of different intensities. Fifteen young physically active healthy men performed an incremental exercise (INCR) up to exhaustion and two repetitions of constant work-rate (CWR) exercises at 80% of gas exchange threshold (GET; MODERATE) and at 40% of the difference between GET and peak pulmonary V̇o2 (V̇o2p; HEAVY). V̇o2p and vastus lateralis muscle fractional O2 extraction by NIRS (Δ[deoxy(Hb+Mb)]) were recorded continuously. Transient arterial occlusions were carried out at rest and during the recovery for V̇o2m calculation. All subjects tolerated the repeated occlusions protocol without problems. The quality of the monoexponential fitting for V̇o2m off-kinetics analysis was excellent (0.93≤r2≤0.99). According to interclass correlation coefficient, the test-retest reliability was moderate to good. V̇o2m values at the onset of recovery were ~27, ~38, and ~35 times higher (in MODERATE, HEAVY, and INCR, respectively) than at rest. The time constants (τ) of V̇o2m off-kinetics were lower (P < 0.001) following MODERATE (29.1 ± 6.8 s) vs. HEAVY (40.8 ± 10.9) or INCR (42.9 ± 10.9), suggesting an exercise intensity dependency of V̇o2m off-kinetics. Only following MODERATE the V̇o2m off-kinetics were faster than the V̇o2p off-kinetics. V̇o2m off-kinetics, determined noninvasively by the NIRS repeated occlusions technique, can be utilized as a functional evaluation tool of skeletal muscle oxidative metabolism also following conventional cycle ergometer exercise.NEW & NOTEWORTHY This is the first study in which muscle V̇o2 recovery kinetics, determined noninvasively by near-infrared spectroscopy (NIRS) by utilizing the repeated occlusions method, was applied following standard cycle ergometer exercise of different intensities. The results demonstrate that muscle V̇o2 recovery kinetics, determined noninvasively by the NIRS repeated occlusions technique, can be utilized as a functional evaluation tool of skeletal muscle oxidative metabolism also following conventional cycle ergometer exercise, overcoming significant limitations associated with the traditionally proposed protocol.


Assuntos
Consumo de Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho , Teste de Esforço , Humanos , Cinética , Masculino , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Reprodutibilidade dos Testes
3.
Eur J Appl Physiol ; 119(1): 163-170, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30328505

RESUMO

PURPOSE: We measured cardiac output ([Formula: see text]) during sub-maximal and supra-maximal exercise with inert gas rebreathing ([Formula: see text]) and modified cardio-impedance ([Formula: see text]) and we evaluated the repeatability of the two methods. METHODS: [Formula: see text]O2 and [Formula: see text] were measured twice in parallel with the two methods at sub-maximal (50-250 W) and supra-maximal exercise in 7 young subjects (25 ± 1 years; 74.4 ± 5.2 kg; 1.84 ± 0.07 m). RESULTS: [Formula: see text] and [Formula: see text] increased by 3.4 L·min-1 and by 5.1 L·min-1 per 1 L·min-1 of increase in [Formula: see text], respectively. Mean [Formula: see text] (23.3 ± 2.5 L·min-1) was 9% lower than [Formula: see text] (25.8 ± 2.2 L·min-1) during supra-maximal exercise. Bland-Altman analysis showed that: (i) bias ([Formula: see text]-[Formula: see text]) was significantly different from zero (- 0.65 ± 2.61 L·min-1) and; (ii) the ratios [Formula: see text] ÷ [Formula: see text] were linearly related with [Formula: see text], indicating that [Formula: see text] tended to overestimate [Formula: see text] in comparison with [Formula: see text] for values ranging from 10.0 to 15.0 L·min-1 and to underestimate it for larger values. The coefficient of variation was similar for sub-maximal values (8.6% vs. 7.7%; 95% CL: ×/÷1.31), but lower for [Formula: see text] (7.6%; 95% CL: ×/÷ 2.05) than for [Formula: see text] (27.7%; 95% CL: ×/÷2.54) at supra-maximal intensity. CONCLUSIONS: [Formula: see text] seems to represent a valuable alternative to invasive methods for assessing [Formula: see text] during sub-maximal exercise. The [Formula: see text] underestimation with respect to [Formula: see text] during supra-maximal exercise suggests that [Formula: see text] might be less optimal for supra-maximal intensities.


Assuntos
Débito Cardíaco , Teste de Esforço/métodos , Condicionamento Físico Humano/fisiologia , Troca Gasosa Pulmonar , Adulto , Cardiografia de Impedância/métodos , Cardiografia de Impedância/normas , Teste de Esforço/normas , Humanos , Masculino , Consumo de Oxigênio , Condicionamento Físico Humano/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA