Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 10(1): 3, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184707

RESUMO

Experimental studies have shown that chromatin modifiers have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to pluripotent stem cells. Here, we develop a model of the OCT4 gene regulatory network that includes genes expressing chromatin modifiers TET1 and JMJD2, and the chromatin modification circuit on which these modifiers act. We employ this model to compare three reprogramming approaches that have been considered in the literature with respect to reprogramming efficiency and latency variability. These approaches are overexpression of OCT4 alone, overexpression of OCT4 with TET1, and overexpression of OCT4 with JMJD2. Our results show more efficient and less variable reprogramming when also JMJD2 and TET1 are overexpressed, consistent with previous experimental data. Nevertheless, TET1 overexpression can lead to more efficient reprogramming compared to JMJD2 overexpression. This is the case when the recruitment of DNA methylation by H3K9me3 is weak and the methyl-CpG-binding domain (MBD) proteins are sufficiently scarce such that they do not hamper TET1 binding to methylated DNA. The model that we developed provides a mechanistic understanding of existing experimental results and is also a tool for designing optimized reprogramming approaches that combine overexpression of cell-fate specific transcription factors (TFs) with targeted recruitment of epigenetic modifiers.


Assuntos
Reprogramação Celular , Redes Reguladoras de Genes , Reprogramação Celular/genética , Diferenciação Celular/genética , Redes Reguladoras de Genes/genética , Cromatina , Epigênese Genética/genética
2.
Sci Adv ; 9(48): eadg8495, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019912

RESUMO

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. We develop a system that accurately reports OCT4 protein levels in live cells and use it to reveal the trajectories of OCT4 in successful reprogramming. Our system comprises a synthetic genetic circuit that leverages noise to generate a wide range of OCT4 trajectories and a microRNA targeting endogenous OCT4 to set total cellular OCT4 protein levels. By fusing OCT4 to a fluorescent protein, we are able to track OCT4 trajectories with clonal resolution via live-cell imaging. We discover that a supraphysiological, stable OCT4 level is required, but not sufficient, for efficient iPSC colony formation. Our synthetic genetic circuit design and high-throughput live-imaging pipeline are generalizable for investigating TF dynamics for other cell fate programming applications.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular/genética , Células Cultivadas , Reprogramação Celular/genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Bull Math Biol ; 85(5): 39, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000280

RESUMO

Continuous-time Markov chains are frequently used as stochastic models for chemical reaction networks, especially in the growing field of systems biology. A fundamental problem for these Stochastic Chemical Reaction Networks (SCRNs) is to understand the dependence of the stochastic behavior of these systems on the chemical reaction rate parameters. Towards solving this problem, in this paper we develop theoretical tools called comparison theorems that provide stochastic ordering results for SCRNs. These theorems give sufficient conditions for monotonic dependence on parameters in these network models, which allow us to obtain, under suitable conditions, information about transient and steady-state behavior. These theorems exploit structural properties of SCRNs, beyond those of general continuous-time Markov chains. Furthermore, we derive two theorems to compare stationary distributions and mean first passage times for SCRNs with different parameter values, or with the same parameters and different initial conditions. These tools are developed for SCRNs taking values in a generic (finite or countably infinite) state space and can also be applied for non-mass-action kinetics models. When propensity functions are bounded, our method of proof gives an explicit method for coupling two comparable SCRNs, which can be used to simultaneously simulate their sample paths in a comparable manner. We illustrate our results with applications to models of enzymatic kinetics and epigenetic regulation by chromatin modifications.


Assuntos
Algoritmos , Conceitos Matemáticos , Processos Estocásticos , Epigênese Genética , Modelos Biológicos , Cadeias de Markov , Cinética
5.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747813

RESUMO

Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the successful reprogramming trajectories of the core pluripotency TF, OCT4, and design a genetic controller that enforces such trajectories with high precision. By combining a genetic circuit that generates a wide range of OCT4 trajectories with live-cell imaging, we track OCT4 trajectories with clonal resolution and find that a distinct constant OCT4 trajectory is required for colony formation. We then develop a synthetic genetic circuit that yields a tight OCT4 distribution around the identified trajectory and outperforms in terms of reprogramming efficiency other circuits that less accurately regulate OCT4. Our synthetic biology approach is generalizable for identifying and enforcing TF dynamics for cell fate programming applications.

6.
Nucleic Acids Res ; 51(6): 2963-2973, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36840726

RESUMO

A ratiometric response gives an output that is proportional to the ratio between the magnitudes of two inputs. Ratio computation has been observed in nature and is also needed in the development of smart probiotics and organoids. Here, we achieve ratiometric gene expression response in bacteria Escherichia coli with the incoherent merger network. In this network, one input molecule activates expression of the output protein while the other molecule activates an intermediate protein that enhances the output's degradation. When degradation rate is first order and faster than dilution, the output responds linearly to the ratio between the input molecules' levels over a wide range with R2 close to 1. Response sensitivity can be quantitatively tuned by varying the output's translation rate. Furthermore, ratiometric responses are robust to global perturbations in cellular components that influence gene expression because such perturbations affect the output through an incoherent feedforward loop. This work demonstrates a new molecular signal processing mechanism for multiplexed sense-and-respond circuits that are robust to intra-cellular context.


Assuntos
Biologia Computacional , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Genômica
7.
Curr Opin Biotechnol ; 78: 102837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343564

RESUMO

Natural biological systems display complex regulation and synthetic biomolecular systems have been used to understand their natural counterparts and to parse sophisticated regulations into core design principles. At the same time, the engineering of biomolecular systems has unarguable potential to transform current and to enable new, yet-to-be-imagined, biotechnology applications. In this review, we discuss the progression of control systems design in synthetic biology, from the purpose of understanding the function of naturally occurring regulatory motifs to that of creating genetic circuits whose function is sufficiently robust for biotechnology applications.


Assuntos
Engenharia Genética , Biologia Sintética , Biotecnologia , Redes Reguladoras de Genes
8.
Nat Commun ; 13(1): 7054, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396941

RESUMO

Heterologous gene activation causes non-physiological burden on cellular resources that cells are unable to adjust to. Here, we introduce a feedforward controller that actuates growth rate upon activation of a gene of interest (GOI) to compensate for such a burden. The controller achieves this by activating a modified SpoT enzyme (SpoTH) with sole hydrolysis activity, which lowers ppGpp level and thus increases growth rate. An inducible RelA+ expression cassette further allows to precisely set the basal level of ppGpp, and thus nominal growth rate, in any bacterial strain. Without the controller, activation of the GOI decreased growth rate by more than 50%. With the controller, we could activate the GOI to the same level without growth rate defect. A cell strain armed with the controller in co-culture enabled persistent population-level activation of a GOI, which could not be achieved by a strain devoid of the controller. The feedforward controller is a tunable, modular, and portable tool that allows dynamic gene activation without growth rate defects for bacterial synthetic biology applications.


Assuntos
Guanosina Tetrafosfato , Biologia Sintética , Guanosina Tetrafosfato/metabolismo , Ativação Transcricional
9.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630606

RESUMO

Information exchange is a critical process in all communication systems, including biological ones. Retroactivity describes the load that downstream modules apply to their upstream systems in biological circuits. The motivation behind this work is that of integrating retroactivity, a concept proper of biochemical circuits, with the metrics defined in Information Theory and Digital Communications. This paper focuses on studying the impact of retroactivity on different biological signaling system models, which present analogies with well-known telecommunication systems. The mathematical analysis is performed both in the high and low molecular counts regime, by mean of the Chemical Master Equation and the Linear Noise Approximation, respectively. The main goal of this work is to provide analytical tools to maximize the reliable information exchange across different biomolecular circuit models. Results highlight how, in general, retroactivity harms communication performance. This negative effect can be mitigated by adding to the signaling circuit an independent upstream system that connects with the same pool of downstream circuits.


Assuntos
Modelos Biológicos , Transdução de Sinais , Comunicação , Fenótipo
10.
Nat Commun ; 13(1): 1720, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361767

RESUMO

Engineered signaling networks can impart cells with new functionalities useful for directing differentiation and actuating cellular therapies. For such applications, the engineered networks must be tunable, precisely regulate target gene expression, and be robust to perturbations within the complex context of mammalian cells. Here, we use bacterial two-component signaling proteins to develop synthetic phosphoregulation devices that exhibit these properties in mammalian cells. First, we engineer a synthetic covalent modification cycle based on kinase and phosphatase proteins derived from the bifunctional histidine kinase EnvZ, enabling analog tuning of gene expression via its response regulator OmpR. By regulating phosphatase expression with endogenous miRNAs, we demonstrate cell-type specific signaling responses and a new strategy for accurate cell type classification. Finally, we implement a tunable negative feedback controller via a small molecule-stabilized phosphatase, reducing output expression variance and mitigating the context-dependent effects of off-target regulation and resource competition. Our work lays the foundation for establishing tunable, precise, and robust control over cell behavior with synthetic signaling networks.


Assuntos
Proteínas de Bactérias , Fosfotransferases , Animais , Histidina Quinase/genética , Mamíferos , Fosforilação , Transdução de Sinais
11.
PLoS Comput Biol ; 18(4): e1009961, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35385468

RESUMO

Epigenetic cell memory allows distinct gene expression patterns to persist in different cell types despite a common genotype. Although different patterns can be maintained by the concerted action of transcription factors (TFs), it was proposed that long-term persistence hinges on chromatin state. Here, we study how the dynamics of chromatin state affect memory, and focus on a biologically motivated circuit motif, among histones and DNA modifications, that mediates the action of TFs on gene expression. Memory arises from time-scale separation among three circuit's constituent processes: basal erasure, auto and cross-catalysis, and recruited erasure of modifications. When the two latter processes are sufficiently faster than the former, the circuit exhibits bistability and hysteresis, allowing active and repressed gene states to coexist and persist after TF stimulus removal. The duration of memory is stochastic with a mean value that increases as time-scale separation increases, but more so for the repressed state. This asymmetry stems from the cross-catalysis between repressive histone modifications and DNA methylation and is enhanced by the relatively slower decay rate of the latter. Nevertheless, TF-mediated positive autoregulation can rebalance this asymmetry and even confers robustness of active states to repressive stimuli. More generally, by wiring positively autoregulated chromatin modification circuits under time scale separation, long-term distinct gene expression patterns arise, which are also robust to failure in the regulatory links.


Assuntos
Cromatina , Histonas , Cromatina/genética , Epigênese Genética/genética , Epigenômica , Código das Histonas , Histonas/genética , Histonas/metabolismo
12.
ACS Synth Biol ; 10(12): 3330-3342, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34780149

RESUMO

The design of genetic circuits typically relies on characterization of constituent modules in isolation to predict the behavior of modules' composition. However, it has been shown that the behavior of a genetic module changes when other modules are in the cell due to competition for shared resources. In order to engineer multimodule circuits that behave as intended, it is thus necessary to predict changes in the behavior of a genetic module when other modules load cellular resources. Here, we introduce two characteristics of circuit modules: the demand for cellular resources and the sensitivity to resource loading. When both are known for every genetic module in a circuit library, they can be used to predict any module's behavior upon addition of any other module to the cell. We develop an experimental approach to measure both characteristics for any circuit module using a resource sensor module. Using the measured resource demand and sensitivity for each module in a library, the outputs of the modules can be accurately predicted when they are inserted in the cell in arbitrary combinations. These resource competition characteristics may be used to inform the design of genetic circuits that perform as predicted despite resource competition.


Assuntos
Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética
13.
Cell Syst ; 12(6): 561-592, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34139166

RESUMO

The rise of systems biology has ushered a new paradigm: the view of the cell as a system that processes environmental inputs to drive phenotypic outputs. Synthetic biology provides a complementary approach, allowing us to program cell behavior through the addition of synthetic genetic devices into the cellular processor. These devices, and the complex genetic circuits they compose, are engineered using a design-prototype-test cycle, allowing for predictable device performance to be achieved in a context-dependent manner. Within mammalian cells, context effects impact device performance at multiple scales, including the genetic, cellular, and extracellular levels. In order for synthetic genetic devices to achieve predictable behaviors, approaches to overcome context dependence are necessary. Here, we describe control systems approaches for achieving context-aware devices that are robust to context effects. We then consider cell fate programing as a case study to explore the potential impact of context-aware devices for regenerative medicine applications.


Assuntos
Redes Reguladoras de Genes , Biologia Sintética , Animais , Mamíferos
14.
Nat Commun ; 12(1): 1692, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727557

RESUMO

CRISPRi-mediated gene regulation allows simultaneous control of many genes. However, highly specific sgRNA-promoter binding is, alone, insufficient to achieve independent transcriptional regulation of multiple targets. Indeed, due to competition for dCas9, the repression ability of one sgRNA changes significantly when another sgRNA becomes expressed. To solve this problem and decouple sgRNA-mediated regulatory paths, we create a dCas9 concentration regulator that implements negative feedback on dCas9 level. This allows any sgRNA to maintain an approximately constant dose-response curve, independent of other sgRNAs. We demonstrate the regulator performance on both single-stage and layered CRISPRi-based genetic circuits, zeroing competition effects of up to 15-fold changes in circuit I/O response encountered without the dCas9 regulator. The dCas9 regulator decouples sgRNA-mediated regulatory paths, enabling concurrent and independent regulation of multiple genes. This allows predictable composition of CRISPRi-based genetic modules, which is essential in the design of larger scale synthetic genetic circuits.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Redes Reguladoras de Genes , Técnicas Genéticas , RNA Guia de Cinetoplastídeos/genética
15.
Nat Commun ; 11(1): 5690, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173034

RESUMO

Synthetic biology has the potential to bring forth advanced genetic devices for applications in healthcare and biotechnology. However, accurately predicting the behavior of engineered genetic devices remains difficult due to lack of modularity, wherein a device's output does not depend only on its intended inputs but also on its context. One contributor to lack of modularity is loading of transcriptional and translational resources, which can induce coupling among otherwise independently-regulated genes. Here, we quantify the effects of resource loading in engineered mammalian genetic systems and develop an endoribonuclease-based feedforward controller that can adapt the expression level of a gene of interest to significant resource loading in mammalian cells. Near-perfect adaptation to resource loads is facilitated by high production and catalytic rates of the endoribonuclease. Our design is portable across cell lines and enables predictable tuning of controller function. Ultimately, our controller is a general-purpose device for predictable, robust, and context-independent control of gene expression.


Assuntos
Endorribonucleases/genética , Engenharia Genética/métodos , Mamíferos/genética , Biologia Sintética/métodos , Animais , Linhagem Celular , Expressão Gênica , Humanos , Modelos Biológicos
16.
PLoS Comput Biol ; 16(9): e1008159, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32925923

RESUMO

Intracellular spatial heterogeneity is frequently observed in bacteria, where the chromosome occupies part of the cell's volume and a circuit's DNA often localizes within the cell. How this heterogeneity affects core processes and genetic circuits is still poorly understood. In fact, commonly used ordinary differential equation (ODE) models of genetic circuits assume a well-mixed ensemble of molecules and, as such, do not capture spatial aspects. Reaction-diffusion partial differential equation (PDE) models have been only occasionally used since they are difficult to integrate and do not provide mechanistic understanding of the effects of spatial heterogeneity. In this paper, we derive a reduced ODE model that captures spatial effects, yet has the same dimension as commonly used well-mixed models. In particular, the only difference with respect to a well-mixed ODE model is that the association rate constant of binding reactions is multiplied by a coefficient, which we refer to as the binding correction factor (BCF). The BCF depends on the size of interacting molecules and on their location when fixed in space and it is equal to unity in a well-mixed ODE model. The BCF can be used to investigate how spatial heterogeneity affects the behavior of core processes and genetic circuits. Specifically, our reduced model indicates that transcription and its regulation are more effective for genes located at the cell poles than for genes located on the chromosome. The extent of these effects depends on the value of the BCF, which we found to be close to unity. For translation, the value of the BCF is always greater than unity, it increases with mRNA size, and, with biologically relevant parameters, is substantially larger than unity. Our model has broad validity, has the same dimension as a well-mixed model, yet it incorporates spatial heterogeneity. This simple-to-use model can be used to both analyze and design genetic circuits while accounting for spatial intracellular effects.


Assuntos
Bactérias , Redes Reguladoras de Genes/genética , Genes Bacterianos/genética , Modelos Biológicos , Bactérias/química , Bactérias/citologia , Bactérias/genética , Biologia Computacional , Difusão , Espaço Intracelular/química , Espaço Intracelular/genética
17.
IEEE Trans Netw Sci Eng ; 7(4): 2940-2951, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33437845

RESUMO

Multistability is a key property of dynamical systems modeling cellular regulatory networks implicated in cell fate decisions, where, different stable steady states usually represent distinct cell phenotypes. Monotone network motifs are highly represented in these regulatory networks. In this paper, we leverage the properties of monotone dynamical systems to provide theoretical results that guide the selection of inputs that trigger a transition, i.e., reprogram the network, to a desired stable steady state. We first show that monotone dynamical systems with bounded trajectories admit a minimum and a maximum stable steady state. Then, we provide input choices that are guaranteed to reprogram the system to these extreme steady states. For intermediate states, we provide an input space that is guaranteed to contain an input that reprograms the system to the desired state. We then provide implementation guidelines for finite-time procedures that search this space for such an input, along with rules to prune parts of the space during search. We demonstrate these results on simulations of two recurrent regulatory network motifs: self-activation within mutual antagonism and self-activation within mutual cooperation. Our results depend uniquely on the structure of the network and are independent of specific parameter values.

18.
Curr Opin Biotechnol ; 63: 41-47, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31877425

RESUMO

Modularity has been the subject of intense investigation in systems biology for more than two decades. Whether modularity holds in biological networks is a question that has attracted renewed attention in recent years with the advent of synthetic biology, mostly as a convenient property to perform bottom-up design of complex systems. A number of studies have appeared, which fundamentally challenge modularity as a property of engineered biological circuits. Here, we summarize some of these studies and potential engineering solutions that have been proposed to enable modular composition of biological circuits.


Assuntos
Biologia Sintética , Biologia de Sistemas
19.
Methods Mol Biol ; 1975: 363-405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31062319

RESUMO

The notion of reprogramming cell fate is a direct challenge to the traditional view in developmental biology that a cell's phenotypic identity is sealed after undergoing differentiation. Direct experimental evidence, beginning with the somatic cell nuclear transfer experiments of the twentieth century and culminating in the more recent breakthroughs in transdifferentiation and induced pluripotent stem cell (iPSC) reprogramming, have rewritten the rules for what is possible with cell fate transformation. Research is ongoing in the manipulation of cell fate for basic research in disease modeling, drug discovery, and clinical therapeutics. In many of these cell fate reprogramming experiments, there is often little known about the genetic and molecular changes accompanying the reprogramming process. However, gene regulatory networks (GRNs) can in some cases be implicated in the switching of phenotypes, providing a starting point for understanding the dynamic changes that accompany a given cell fate reprogramming process. In this chapter, we present a framework for computationally analyzing cell fate changes by mathematically modeling these GRNs. We provide a user guide with several tutorials of a set of techniques from dynamical systems theory that can be used to probe the intrinsic properties of GRNs as well as study their responses to external perturbations.


Assuntos
Diferenciação Celular , Reprogramação Celular , Biologia Computacional/métodos , Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Linhagem da Célula , Simulação por Computador , Humanos , Modelos Teóricos
20.
PLoS Comput Biol ; 15(2): e1006784, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779734

RESUMO

Phenotypical variability in the absence of genetic variation often reflects complex energetic landscapes associated with underlying gene regulatory networks (GRNs). In this view, different phenotypes are associated with alternative states of complex nonlinear systems: stable attractors in deterministic models or modes of stationary distributions in stochastic descriptions. We provide theoretical and practical characterizations of these landscapes, specifically focusing on stochastic Slow Promoter Kinetics (SPK), a time scale relevant when transcription factor binding and unbinding are affected by epigenetic processes like DNA methylation and chromatin remodeling. In this case, largely unexplored except for numerical simulations, adiabatic approximations of promoter kinetics are not appropriate. In contrast to the existing literature, we provide rigorous analytic characterizations of multiple modes. A general formal approach gives insight into the influence of parameters and the prediction of how changes in GRN wiring, for example through mutations or artificial interventions, impact the possible number, location, and likelihood of alternative states. We adapt tools from the mathematical field of singular perturbation theory to represent stationary distributions of Chemical Master Equations for GRNs as mixtures of Poisson distributions and obtain explicit formulas for the locations and probabilities of metastable states as a function of the parameters describing the system. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations, a synthetic oscillator, and a trans-differentiation network.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/fisiologia , Regiões Promotoras Genéticas/fisiologia , Diferenciação Celular/genética , Simulação por Computador , Regulação da Expressão Gênica/fisiologia , Cinética , Modelos Biológicos , Modelos Genéticos , Fenótipo , Distribuição de Poisson , Probabilidade , Regiões Promotoras Genéticas/genética , Ligação Proteica , Processos Estocásticos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA