RESUMO
OBJECTIVES: Avacopan, a selective C5aR1 inhibitor, recently emerged as a glucocorticoid (GCs) sparing agent in ANCA-associated vasculitis (AAV). We aim to evaluate the tolerance and efficacy of avacopan given outside randomized clinical trials or with severe kidney involvement. METHODS: In this multicentre retrospective study, we reviewed the clinical charts of patients with AAV and contraindication to high dose of GCs who received avacopan 30 mg b.i.d plus standard-of-care regimen owing to the French early access program between 2020 and 2023. Efficacy and safety data were recorded using a standardized case report form. RESULTS: Among the 31 patients (median age 72 years), 10 had a relapsing AAV, twenty had anti-myeloperoxidase antibodies, and thirty had kidney vasculitis. Induction regimen included rituximab (n = 27), cyclophosphamide (n = 2), or both (n = 2). Five patients did not receive GCs. Despite rapid GCs tapering (which were withdrawn in 23 patients before month 3), 25 patients (81%) had a favorable outcome and no severe adverse event. The estimated glomerular filtration rate increased from 19 [15; 34] to 35 mL/min/1.73m2 [23; 45] at month 12 (p< 0.05), independently of kidney biopsies findings. One patient developed refractory AAV and two had a relapse while receiving avacopan. At month 12, ANCA remained positive in 10/18 patients (55.5%). Two patients developed severe adverse events leading to a withdrawal of avacopan (hepatitis and age-related macular degeneration). CONCLUSIONS: The GCs' sparing effect of avacopan was confirmed, even in patients with severe kidney vasculitis, but further studies are required to identify the optimal dosing of GCs when avacopan is used.
RESUMO
Dibenzotriazonine represent a new class of nine-membered cyclic azobenzenes with a nitrogen atom embedded in the bridging chain. To enable future applications of this photoactive backbone, we propose in this study the synthesis of mono- and dihalogenated triazonines, that allow the late-stage introduction of different functionalized aryl groups and heteroatoms (N, O, and P) via palladium-catalyzed reactions. Indeed, different diphenylphosphoryl-triazonines were synthesized with functional groups such as aniline or phenol. Bis(diphenylphosphoryl)phenyl mono- and bis-carbamate-triazonines were also isolated in good yields.
RESUMO
Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.
Assuntos
Potenciação de Longa Duração , Neocórtex , Cálcio/metabolismo , Depressão , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologiaRESUMO
We disclose here dibenzotriazonines as a new class of nine-membered cyclic azobenzenes displaying a nitrogen function in the saturated ring chain. The specific features of these compounds are (i) a preferred E-configuration, (ii) high bi-directional photoswitching and (iii) good thermal stability of both E- and Z-forms.
RESUMO
Spinal cord injury leads to severe locomotor deficits or even complete leg paralysis. Here we introduce targeted spinal cord stimulation neurotechnologies that enabled voluntary control of walking in individuals who had sustained a spinal cord injury more than four years ago and presented with permanent motor deficits or complete paralysis despite extensive rehabilitation. Using an implanted pulse generator with real-time triggering capabilities, we delivered trains of spatially selective stimulation to the lumbosacral spinal cord with timing that coincided with the intended movement. Within one week, this spatiotemporal stimulation had re-established adaptive control of paralysed muscles during overground walking. Locomotor performance improved during rehabilitation. After a few months, participants regained voluntary control over previously paralysed muscles without stimulation and could walk or cycle in ecological settings during spatiotemporal stimulation. These results establish a technological framework for improving neurological recovery and supporting the activities of daily living after spinal cord injury.
Assuntos
Tecnologia Biomédica , Terapia por Estimulação Elétrica , Paralisia/reabilitação , Traumatismos da Medula Espinal/reabilitação , Caminhada/fisiologia , Atividades Cotidianas , Simulação por Computador , Eletromiografia , Espaço Epidural , Humanos , Perna (Membro)/inervação , Perna (Membro)/fisiologia , Perna (Membro)/fisiopatologia , Locomoção/fisiologia , Masculino , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Paralisia/fisiopatologia , Paralisia/cirurgia , Medula Espinal/citologia , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/cirurgiaRESUMO
International guidelines suggest lowering elevated phosphorus level to the normal range in patients on dialysis. Among the phosphate-lowering strategies, phosphate binder is frequently used in addition to dietary phosphate restriction and an adequate dialysis strategy. However, serum phosphate concentration higher than 1.78mmol/L is observed in more than 40% of patients justifying the quest for new drugs. Sucroferric oxyhydroxide is one of the new iron-based agents and is available in France since May 2016. A recent international multicentre study showed this new drug to be as efficacious and non-inferior to sevelamer carbonate in magnitude of serum phosphate control. The serum phosphorus-lowering effect was maintained over 1year. When compared to carbonate sevelamer, the pill-burden was half with sucroferric oxyhydroxide because of its high phosphate binding capacity. As previously shown by experimental studies, no risk of iron accumulation was observed since iron absorption is negligible. Discolored feces and diarrhea were fairly frequent side effects. When diarrhea subsides, the tolerability of this new phosphate binder is excellent on a long-term basis.
Assuntos
Quelantes/administração & dosagem , Compostos Férricos/administração & dosagem , Hiperfosfatemia/terapia , Diálise Renal , Sevelamer/administração & dosagem , Sacarose/administração & dosagem , Combinação de Medicamentos , Medicina Baseada em Evidências , Guias como Assunto , Humanos , Hiperfosfatemia/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Diálise Renal/efeitos adversos , Resultado do TratamentoRESUMO
We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP: VIDEO ABSTRACT.
Assuntos
Simulação por Computador , Modelos Neurológicos , Neocórtex/citologia , Neurônios/classificação , Neurônios/citologia , Córtex Somatossensorial/citologia , Algoritmos , Animais , Membro Posterior/inervação , Masculino , Neocórtex/fisiologia , Rede Nervosa , Neurônios/fisiologia , Ratos , Ratos Wistar , Córtex Somatossensorial/fisiologiaRESUMO
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.
RESUMO
Electrical impedance spectroscopy measurements were performed in post-mortem mice brains using a flexible probe with an embedded micrometric electrode array. Combined with a peak resistance frequency method this allowed obtaining intrinsic resistivity values of brain tissues and structures with submillimetric resolution. Reproducible resistivity measurements are reported, which allows the resistivity in the cortex, ventricle, fiber tracts, thalamus and basal ganglia to be differentiated. Measurements of brain slices revealed resistivity profiles correlated with the local density of cell bodies hence allowing to discriminate between the different cortical layers. Finally, impedance measurements were performed on a model of cauterized mouse brain evidencing the possibility to measure the spatial extent and the degree of the tissue denaturation due to the cauterization.