Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(50): e2205078, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587991

RESUMO

Three-dimensional (3D) bioprinting is driving significant innovations in biomedicine over recent years. Under certain scenarios such as in intraoperative bioprinting, the bioinks used should exhibit not only cyto/biocompatibility but also adhesiveness in wet conditions. Herein, an adhesive bioink composed of gelatin methacryloyl, gelatin, methacrylated hyaluronic acid, and skin secretion of Andrias davidianus is designed. The bioink exhibits favorable cohesion to allow faithful extrusion bioprinting in wet conditions, while simultaneously showing good adhesion to a variety of surfaces of different chemical properties, possibly achieved through the diverse bonds presented in the bioink formulation. As such, this bioink is able to fabricate sophisticated planar and volumetric constructs using extrusion bioprinting, where the dexterity is further enhanced using ergonomic handheld bioprinters to realize in situ bioprinting. In vitro experiments reveal that cells maintain high viability; further in vivo studies demonstrate good integration and immediate injury sealing. The characteristics of the bioink indicate its potential widespread utility in extrusion bioprinting and will likely broaden the applications of bioprinting toward situations such as in situ dressing and minimally invasive tissue regeneration.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Adesivos , Gelatina/química , Pele , Cicatrização , Impressão Tridimensional , Hidrogéis/química , Bioimpressão/métodos
2.
Matter ; 4(1): 217-240, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33718864

RESUMO

In this study, we present the photosynthetic oxygen (O2) supply to mammalian cells within a volumetric extracellular matrix-like construct, whereby a three-dimensional (3D)-bioprinted fugitive pattern encapsulating unicellular green algae, Chlamydomonas reinhardtii (C. reinhardtii), served as a natural photosynthetic O2-generator. The presence of bioprinted C. reinhardtii enhanced the viability and functionality of mammalian cells while reducing the hypoxic conditions within the tissues. We were able to subsequently endothelialize the hollow perfusable microchannels formed after enzymatic removal of the bioprinted C. reinhardtii-laden patterns from the matrices following the initial oxygenation period, to obtain biologically relevant vascularized mammalian tissue constructs. The feasibility of co-culture of C. reinhardtii with human cells, the printability and the enzymatic degradability of the fugitive bioink, as well as the exploration of C. reinhardtii as a natural, eco-friendly, cost-effective, and sustainable source of O2 would likely promote the development of engineered tissues, tissue models, and food for various applications.

3.
Nat Commun ; 11(1): 1267, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152307

RESUMO

Three-dimensional (3D) hydrogel printing enables production of volumetric architectures containing desired structures using programmed automation processes. Our study reports a unique method of resolution enhancement purely relying on post-printing treatment of hydrogel constructs. By immersing a 3D-printed patterned hydrogel consisting of a hydrophilic polyionic polymer network in a solution of polyions of the opposite net charge, shrinking can rapidly occur resulting in various degrees of reduced dimensions comparing to the original pattern. This phenomenon, caused by complex coacervation and water expulsion, enables us to reduce linear dimensions of printed constructs while maintaining cytocompatible conditions in a cell type-dependent manner. We anticipate our shrinking printing technology to find widespread applications in promoting the current 3D printing capacities for generating higher-resolution hydrogel-based structures without necessarily having to involve complex hardware upgrades or other printing parameter alterations.


Assuntos
Fenômenos Biomecânicos , Bioimpressão/métodos , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Quitosana , Gelatina , Humanos , Células MCF-7 , Metacrilatos , Camundongos , Polímeros/química , Impressão Tridimensional/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais/química
4.
J 3D Print Med ; 3(2): 55-58, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31258934
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA