Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): e35, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38381903

RESUMO

Nucleoside analogues like 4-thiouridine (4sU) are used to metabolically label newly synthesized RNA. Chemical conversion of 4sU before sequencing induces T-to-C mismatches in reads sequenced from labelled RNA, allowing to obtain total and labelled RNA expression profiles from a single sequencing library. Cytotoxicity due to extended periods of labelling or high 4sU concentrations has been described, but the effects of extensive 4sU labelling on expression estimates from nucleotide conversion RNA-seq have not been studied. Here, we performed nucleotide conversion RNA-seq with escalating doses of 4sU with short-term labelling (1h) and over a progressive time course (up to 2h) in different cell lines. With high concentrations or at later time points, expression estimates were biased in an RNA half-life dependent manner. We show that bias arose by a combination of reduced mappability of reads carrying multiple conversions, and a global, unspecific underrepresentation of labelled RNA emerging during library preparation and potentially global reduction of RNA synthesis. We developed a computational tool to rescue unmappable reads, which performed favourably compared to previous read mappers, and a statistical method, which could fully remove remaining bias. All methods developed here are freely available as part of our GRAND-SLAM pipeline and grandR package.


Assuntos
RNA-Seq , Tiouridina , Tiouridina/metabolismo , Tiouridina/química , RNA-Seq/métodos , Humanos , RNA/genética , Análise de Sequência de RNA/métodos , Nucleotídeos/genética
2.
J Med Chem ; 65(22): 15165-15173, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36374020

RESUMO

Thiopurines are in widespread clinical use for the treatment of immunological disorders and certain cancers. However, treatment failure due to resistance or adverse drug reactions are common, asking for new therapeutic strategies. We investigated the potential of 6-thioguanosine monophosphate (6sGMP) prodrugs to overcome resistance to 6-thioguanine. We successfully developed synthetic routes toward diverse 6sGMP prodrugs, tested their proliferation inhibitory potential in different cell lines, and examined their mode of action. Our results show that 4-acetyloxybenzyl- and cycloSaligenyl-derivatized 6sGMP prodrugs are effective antiproliferative compounds in cells that are resistant to thiopurines. We find that resistance is related to the expression of salvage pathway enzyme HGPRT. Using TUC-seq DUAL, we demonstrate the intracellular conversion of 6sGMP prodrugs into bioactive 6sGTPs. Thus, our study offers a promising strategy for thiopurine therapy by using 6sGMP prodrugs, and it suggests TUC-seq DUAL as a simple and fast method to measure the success of thiopurine therapy.


Assuntos
Neoplasias da Mama , Leucemia , Pró-Fármacos , Humanos , Feminino , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Tioguanina/farmacologia , Tioguanina/metabolismo , Nucleosídeos de Purina
3.
RSC Chem Biol ; 3(4): 447-455, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35441143

RESUMO

Metabolic labeling has emerged as a powerful tool to endow RNA with reactive handles allowing for subsequent chemical derivatization and processing. Recently, thiolated nucleosides, such as 4-thiouridine (4sU), have attracted great interest in metabolic labeling-based RNA sequencing approaches (TUC-seq, SLAM-seq, TimeLapse-seq) to study cellular RNA expression and decay dynamics. For these and other applications (e.g. PAR-CLIP), thus far only the naked nucleoside 4sU has been applied. Here we examined the concept of derivatizing 4sU into a 5'-monophosphate prodrug that would allow for cell permeation and potentially improve labeling efficiency by bypassing the rate-limiting first step of 5' phosphorylation of the nucleoside into the ultimately bioactive 4sU triphosphate (4sUTP). To this end, we developed robust synthetic routes towards diverse 4sU monophosphate prodrugs. Using metabolic labeling assays, we found that most of the newly introduced 4sU prodrugs were well tolerated by the cells. One derivative, the bis(4-acetyloxybenzyl) 5'-monophosphate of 4sU, was also efficiently incorporated into nascent RNA.

4.
Angew Chem Int Ed Engl ; 59(17): 6881-6886, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31999864

RESUMO

Temporal information about cellular RNA populations is essential to understand the functional roles of RNA. We have developed the hydrazine/NH4 Cl/OsO4 -based conversion of 6-thioguanosine (6sG) into A', where A' constitutes a 6-hydrazino purine derivative. A' retains the Watson-Crick base-pair mode and is efficiently decoded as adenosine in primer extension assays and in RNA sequencing. Because 6sG is applicable to metabolic labeling of freshly synthesized RNA and because the conversion chemistry is fully compatible with the conversion of the frequently used metabolic label 4-thiouridine (4sU) into C, the combination of both modified nucleosides in dual-labeling setups enables high accuracy measurements of RNA decay. This approach, termed TUC-seq DUAL, uses the two modified nucleosides in subsequent pulses and their simultaneous detection, enabling mRNA-lifetime evaluation with unprecedented precision.


Assuntos
Guanosina/análogos & derivados , Análise de Sequência de RNA/métodos , Tionucleosídeos/química , Sequência de Bases , Guanosina/química , Hidrazinas/química , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coloração e Rotulagem
5.
Methods Mol Biol ; 2062: 191-211, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768978

RESUMO

The study of RNA dynamics, specifically RNA transcription and decay rates, has gained increasing attention in recent years because various mechanisms have been discovered that affect mRNA half-life, thereby ultimately controlling protein output. Therefore, there is a need for methods enabling minimally invasive, simple and high-throughput determination of RNA stability that can be applied to determine RNA transcription and decay rates in cells and organisms. We have recently developed a protocol which we named TUC-seq to directly distinguish newly synthesized transcripts from the preexisting pool of transcripts by metabolic labeling of nascent RNAs with 4-thiouridine (4sU) followed by osmium tetroxide-mediated conversion of 4sU to cytidine (C) and direct sequencing. In contrast to other related methods (SLAM-seq, TimeLapse-seq), TUC-seq converts 4sU to a native C instead of an alkylated or otherwise modified nucleoside derivative. TUC-seq can be applied to any cell type that is amenable to 4sU labeling. By employing different labeling strategies (pulse or pulse-chase labeling), it is suitable for a broad field of applications and provides a fast and highly efficient means to determine mRNA transcription and decay rates.


Assuntos
Citidina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estabilidade de RNA/genética , RNA Mensageiro/genética , Tiouridina/metabolismo , Transcrição Gênica/genética , Linhagem Celular , Células HEK293 , Humanos , Análise de Sequência de RNA/métodos , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA