Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Drug Test Anal ; 16(2): 199-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37337992

RESUMO

Many innovative biotherapeutics have been marketed in the last decade. Monoclonal antibodies (mAbs) and Fc-fusion proteins (Fc-proteins) have been developed for the treatment of diverse diseases (cancer, autoimmune diseases, and inflammatory disorders) and now represent an important part of targeted therapies. However, the ready availability of such biomolecules, sometimes characterized by their anabolic, anti-inflammatory, or erythropoiesis-stimulating properties, raises concerns about their potential misuse as performance enhancers for human and animal athletes. In equine doping control laboratories, a method has been reported to detect the administration of a specific human biotherapeutic in equine plasma; but no high-throughput method has been described for the screening without any a priori knowledge of human or murine biotherapeutic. In this context, a new broad-spectrum screening method involving UHPLC-HRMS/MS has been developed for the untargeted analysis of murine or human mAbs and related macromolecules in equine plasma. This approach, consisting of a "pellet digestion" strategy performed in a 96-well plate, demonstrates reliable performances at low concentrations (pmol/mL range) with high-throughput capability (≈100 samples/day). Targeting species-specific proteotypic peptides located within the constant parts of mAbs enables the "universal" detection of human biotherapeutics only by monitoring 10 peptides. As proof of principle, this strategy successfully detected different biotherapeutics in spiked plasma samples, and allowed, for the first time, the detection of a human mAb up to 10 days after a 0.12 mg/kg administration to a horse. This development will expand the analytical capabilities of horse doping control laboratories towards protein-based biotherapeutics with adequate sensitivity, throughput, and cost-effectiveness.


Assuntos
Anticorpos Monoclonais , Dopagem Esportivo , Cavalos , Animais , Humanos , Camundongos , Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo/prevenção & controle , Peptídeos
2.
Drug Test Anal ; 15(4): 458-464, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36482504

RESUMO

Nowadays, numerous websites attempt to commercialize over the internet various products, regardless of the lack of approval by the EMA or the FDA either for human or veterinary use. These products are often produced after aborted drug development due to insufficient or deleterious biological effects, synthesized based on natural products, or only based on scientific literature. However, the administration of such products is dangerous, considering the lack of official control over the production of these substances and the absence of approval by health authorities. In this short communication, we provide an extensive analysis of three misbranded and adulterated products sold over the internet named TB500, TB1000, and SGF1000. We confirm that the content of TB500/TB1000 products is not systematically consistent with it's former descriptions, but also that SGF1000 is mainly composed of sheep extracellular matrix (ECM) and blood proteins, and the signal corresponding to the purported growth promoters is excessively diluted.


Assuntos
Aprovação de Drogas , Estados Unidos , Humanos , Animais , Ovinos , Preparações Farmacêuticas , United States Food and Drug Administration
3.
Drug Test Anal ; 14(5): 864-878, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35001538

RESUMO

In order to overcome the challenge associated with the screening of Anabolic-Androgenic Steroids abuses in animal competitions, a non-targeted liquid chromatography coupled to high resolution mass spectrometry based metabolomics approach was implemented on equine urine samples to highlight potential biomarkers associated with the administration of such compounds, using testosterone esters as model steroids. A statistical model relying on four potential biomarkers intensity could be defined to predict the status of the samples. With a routine application perspective, the monitoring of the highlighted potential biomarkers was first transferred into high-throughput liquid chromatography-selected reaction monitoring (LC-SRM). The model's performances and robustness of the approach were preserved and providing a first demonstration of metabolomics-based biomarkers integration within a targeted workflow using common benchtop MS instrumentation. In addition, with a view to the widespread implementation of such biomarker-based tools, we have transferred the method to a second laboratory with similar instrumentation. This proof of concept allows the development and application of biomarker-based strategies to meet current doping control needs.


Assuntos
Dopagem Esportivo , Testosterona , Animais , Biomarcadores/urina , Cavalos , Laboratórios , Metabolômica/métodos , Esteroides/análise , Congêneres da Testosterona
4.
Drug Test Anal ; 14(2): 252-261, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34634175

RESUMO

Ciclesonide (CIC) is the first inhaled highly potent corticosteroid that does not cause any cortisol suppression. It has been developed for the treatment of asthma in human and more recently in equine. CIC is the active compound of Aservo® EquiHaler® (Boehringer Ingelheim Vetmedica GmbH), the pre-filled inhaler generating a medicated mist based on Soft Mist™ technology. This prodrug is rapidly converted to desisobutyryl-ciclesonide (des-CIC), the main pharmacologically active compound. Due to its anti-inflammatory properties, CIC is prohibited for use in horse competitions. To set up an appropriate control, the determination of detection times and screening limits are required. Therefore, a highly sensitive analytical method based on supported liquid extraction (SLE) combined with liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) was developed to detect CIC and its active metabolite des-CIC in plasma. The lower limit of detection of CIC and des-CIC was approximately 1 pg/ml in plasma. After a pilot study conducted on a single horse at the recommended dose (eight actuations twice daily corresponding to 5.5 mg/day for the first 5 days, followed by 12 actuations once daily corresponding to 4.1 mg/day in the last 5 days), the same protocol was applied in the main study using six horses. In all horses, CIC and des-CIC levels were less than 5 and 10 pg/ml, respectively, at 36 h after the end of the administration. The outcome of this risk assessment study should be useful to draw any recommendations for horse competitions.


Assuntos
Pregnenodionas , Pró-Fármacos , Animais , Cromatografia Líquida/métodos , Cavalos , Projetos Piloto , Pregnenodionas/análise
5.
Drug Test Anal ; 14(5): 953-962, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33860991

RESUMO

Short half-life doping substances are, quickly eliminated and therefore difficult to control with traditional analytical chemistry methods. Indirect methods targeting biomarkers constitute an alternative to extend detection time frames in doping control analyses. Gene expression analysis (i.e., transcriptomics) has already shown interesting results in both humans and equines for erythropoietin (EPO), growth hormone (GH), and anabolic androgenic steroid (AAS) misuses. In humans, circulating cell-free microRNAs in plasma were described as new potential biomarkers for control of major doping agent (MDA) abuses. The development of a quantitative polymerase chain reaction (qPCR) method allowing the detection of circulating miRNAs was carried out on equine plasma collected on different type of tubes (EDTA, lithium-heparin [LiHep]). Although analyzing plasma collected in EDTA tubes is a standard method in molecular biology, analyzing plasma collected in LiHep tubes is challenging, as heparin is a reverse transcription (RT) and a PCR inhibitor. Different strategies were considered, and attention was paid on both miRNAs extraction quality and detection sensitivity. The detection of endogenous circulating miRNAs was performed and compared between the different types of tubes. In parallel, homologs of human miRNAs characterized as potential biomarkers of doping were sought in equine databases. The miRNA eca-miR-144, described as potential erythropoiesis stimulating agents (ESAs) administration candidate biomarker was retained and assessed in equine post-administration samples. The results about the qPCR method development and optimization are exposed as well as the equine miRNAs detection. To our knowledge, this work is the first study and the proof of concept of circulating miRNAs detection in plasma dedicated to equine doping control.


Assuntos
Hematínicos , MicroRNAs , Animais , Biomarcadores , Ácido Edético , Heparina , Cavalos/genética , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real/métodos
6.
Anal Chem ; 93(47): 15590-15596, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34791882

RESUMO

Synthetic androgenic anabolic steroids (AAS) are banned compounds and considered as major threats by both racing and sports international authorities. Hence, doping control laboratories are continually looking into analytical improvements to increase their detection capabilities, notably by means of emerging technologies. To enhance analytical performances for the detection of synthetic AAS such as stanozolol, specific chromatographic procedures have been developed using recent quaternary liquid chromatography technology originally designed for high-throughput standardized proteomics connected to mass spectrometry. Applying the newly designed elution procedures described in this paper to the analyses of stanozolol and its metabolites in complex matrixes revealed improved sensitivity compared to previously described high-throughput methods. Indeed, we report the consistent and reliable detection of 16ß-hydroxy-stanozolol down to 10 pg/mL in equine urine and being detectable up-to 3 months after a microdosing administration. Furthermore, a five months long elimination of stanozolol and its metabolites could be monitored on horse mane sections after a single dose administration. Our work highlights novel solutions to detect AAS with improved sensitivity. The application of such developments constitutes new landmarks for doping control laboratories and could be extended to other targeted compounds in residue analysis, toxicology, and metabolomics. Based on this work, the developed chromatographic method is now freely available within the Evosep Plus program.


Assuntos
Anabolizantes , Dopagem Esportivo , Animais , Cavalos , Esteroides , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem , Congêneres da Testosterona
7.
Drug Test Anal ; 13(8): 1527-1534, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33870655

RESUMO

Clodronate is a non-nitrogen-containing bisphosphonate drug approved in equine veterinary medicine. Clodronate is prohibited for use in competition horses; therefore, to set up an appropriate control, detection times and screening limits are required. The quantitative method in plasma consisted of addition of chloromethylene diphosphonic acid as internal standard. Automated sample preparation comprised a solid phase extraction with weak anion exchange properties on microplate. After methylation of the residue with trimethyl orthoacetate, analysis was conducted by high-performance liquid chromatography-tandem mass spectrometry. Using a weighting factor of 1/(concentration)2 , good linearity was observed in the range of 1 to 500 ng/ml, with low limits of detection and quantification of 0.5 and 1 ng/ml, respectively. Precision and accuracy determined at four concentrations were satisfactory, with an error percentage less than 15%. Absence of carry-over and good stability of clodronic acid in plasma after a long-term storage at -20°C were verified. The method was successfully applied to the quantification of clodronic acid in plasma samples from horses administered with a single intramuscular administration of Osphos® at a mean dose of 1.43 ± 0.07 mg/kg. The observed detection time will be verified in a clinical population study conducted in diseased horses.


Assuntos
Analgésicos não Narcóticos/sangue , Ácido Clodrônico/sangue , Cavalos/sangue , Animais , Automação , Cromatografia Líquida de Alta Pressão , Dopagem Esportivo , Injeções Intramusculares , Masculino , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectrometria de Massas em Tandem
8.
Drug Test Anal ; 13(6): 1191-1202, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33547737

RESUMO

According to international sport institutions, the use of peroxisome proliferator activated receptor (PPAR)-δ agonists is forbidden at any time in athlete career due to their capabilities to increase physical and endurance performances. The (PPAR)-δ agonist GW501516 is prohibited for sale but is easily available on internet and can be used by cheaters. In the context of doping control, urine is the preferred matrix because of the non-invasive nature of sampling and providing broader exposure detection times to forbidden molecules but often not detected under its native form due to the organism's metabolism. Even if urinary metabolism of G501516 has been extensively studied in human subjects, knowledge on GW501516 metabolism in horses remains limited. To fight against doping practices in horses' races, GW501516 metabolism has to be studied in horse urine to identify and characterize the most relevant target metabolites to ensure an efficient doping control. In this article, in vitro and in vivo experiments have been conducted using horse S9 liver microsome fractions and horse oral administration route, respectively. These investigations determined that the detection of GW501516 must be performed in urine on its metabolites because the parent molecule was extremely metabolized. To maximize analytical method sensitivity, the extraction conditions have been optimized. In accordance with these results, a qualitative analytical method was validated to detect the abuse of GW501516 based on its most relevant metabolites in urine. This work enabled the Laboratoire des Courses Hippiques (LCH) to highlight two cases of illicit administration of this forbidden molecule in post-race samples.


Assuntos
Dopagem Esportivo/prevenção & controle , Detecção do Abuso de Substâncias/métodos , Tiazóis/análise , Administração Oral , Animais , Feminino , Cavalos , Masculino , Microssomos Hepáticos/metabolismo , PPAR delta/agonistas , Tiazóis/metabolismo , Tiazóis/urina
10.
Anal Chem ; 92(19): 13155-13162, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924440

RESUMO

With recent advances in analytical chemistry, liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) has become an essential tool for metabolite discovery and detection. Even if most of the common drug transformations have already been extensively described, manual search of drug metabolites in LC-HRMS/MS datasets is still a common practice in toxicology laboratories, complicating metabolite discovery. Furthermore, the availability of free open-source software for metabolite discovery is still limited. In this article, we present MetIDfyR, an open-source and cross-platform R package for in silico drug phase I/II biotransformation prediction and mass-spectrometric data mining. MetIDfyR has proven its efficacy for advanced metabolite identification in semi-complex and complex mixtures in in vitro or in vivo drug studies and is freely available at github.com/agnesblch/MetIDfyR.


Assuntos
Preparações Farmacêuticas/análise , Bibliotecas de Moléculas Pequenas/análise , Quimioinformática , Cromatografia Líquida , Estrutura Molecular , Preparações Farmacêuticas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Espectrometria de Massas em Tandem
11.
Drug Test Anal ; 12(10): 1452-1461, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32615643

RESUMO

Bisphosphonates are prohibited drugs according to Article 6 of the International Agreement on Breeding, Racing and Wagering of the International Federation of Horseracing Authorities (IFHA) and the International Equestrian Federation (FEI). These compounds are used for the treatment of lameness, navicular and bone diseases in horses and are divided into two groups: non-nitrogen-containing bisphosphonate drugs (e.g. clodronic acid) and nitrogen-containing bisphosphonate drugs (e.g. zoledronic acid). Their hydrophilic properties and the high affinity for the bone matrix make the control of their use quite difficult. Current analytical strategies to detect such compounds often rely on a solid phase extraction (SPE) followed by detection by means of UHPLC-MS/MS after methylation with chemical reagents. To improve the analysis throughput and to eliminate the need for chemical derivatization, an innovative 96-well SPE followed by ion chromatography-mass spectrometry was developed. Analyses are conducted on an ICS-6000 HPIC system coupled to a TSQ Altis™ (Thermo Scientific™). The use of a 96-well SPE allowed 5-fold sample increase and a 6-fold throughput improvement. While preliminary results conducted on horse plasma exhibited similar performances to the method for the detection of non-nitrogen-containing bisphosphonates, the analytical performances of nitrogen-containing bisphosphonates were greatly improved.


Assuntos
Conservadores da Densidade Óssea/sangue , Difosfonatos/sangue , Cavalos/sangue , Animais , Cromatografia Líquida de Alta Pressão , Dopagem Esportivo , Extração em Fase Sólida , Espectrometria de Massas em Tandem
12.
Drug Test Anal ; 12(6): 763-770, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31984676

RESUMO

Recombinant human erythropoietin (rHuEPO) belongs to the therapeutic class of erythropoiesis stimulating agents (ESAs) due to its implication in the creation pathway of red blood cells and thus enhancement of oxygenation. Because of this bioactivity, rHuEPO has been considered as a major doping agent in sports competitions for decades. Over the years, doping control laboratories designed several analytical strategies applied to human and animal samples to highlight any misuse. Even though multiple analytical approaches have been reported, none has yet been dedicated to racing camels. Here, we describe an analytical strategy to test camel plasma samples at screening using an ELISA assay and a targeted nano-liquid chromatography-high-resolution tandem mass spectrometry for confirmatory analysis. The method was validated and has been successfully applied to post-race samples, allowing the detection of a positive case of rHuEPO administration.


Assuntos
Camelus/metabolismo , Dopagem Esportivo/métodos , Eritropoetina/análise , Detecção do Abuso de Substâncias/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Eritropoetina/química , Humanos , Espectrometria de Massas , Proteínas Recombinantes/análise , Reprodutibilidade dos Testes , Esportes
13.
Anal Chem ; 92(1): 1122-1129, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31829555

RESUMO

Large scale proteomic strategies rely on database interrogation. Thus, only referenced proteins can be identified. Recently, Alternative Proteins (AltProts) translated from nonannotated Alternative Open reading frame (AltORFs) were discovered using customized databases. Because of their small size which confers them peptide-like physicochemical properties, they are more difficult to detect using standard proteomics strategies. In this study, we tested different preparation workflows for improving the identification of AltProts in NCH82 human glioma cell line. The highest number of identified AltProts was achieved with RIPA buffer or boiling water extraction followed by acetic acid precipitation.


Assuntos
Proteoma/análise , Extração em Fase Sólida/métodos , Fluxo de Trabalho , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Biomarcadores Tumorais/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Peso Molecular , Proteoma/química , Proteoma/isolamento & purificação , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
14.
Nucleic Acids Res ; 47(D1): D403-D410, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30299502

RESUMO

Advances in proteomics and sequencing have highlighted many non-annotated open reading frames (ORFs) in eukaryotic genomes. Genome annotations, cornerstones of today's research, mostly rely on protein prior knowledge and on ab initio prediction algorithms. Such algorithms notably enforce an arbitrary criterion of one coding sequence (CDS) per transcript, leading to a substantial underestimation of the coding potential of eukaryotes. Here, we present OpenProt, the first database fully endorsing a polycistronic model of eukaryotic genomes to date. OpenProt contains all possible ORFs longer than 30 codons across 10 species, and cumulates supporting evidence such as protein conservation, translation and expression. OpenProt annotates all known proteins (RefProts), novel predicted isoforms (Isoforms) and novel predicted proteins from alternative ORFs (AltProts). It incorporates cutting-edge algorithms to evaluate protein orthology and re-interrogate publicly available ribosome profiling and mass spectrometry datasets, supporting the annotation of thousands of predicted ORFs. The constantly growing database currently cumulates evidence from 87 ribosome profiling and 114 mass spectrometry studies from several species, tissues and cell lines. All data is freely available and downloadable from a web platform (www.openprot.org) supporting a genome browser and advanced queries for each species. Thus, OpenProt enables a more comprehensive landscape of eukaryotic genomes' coding potential.


Assuntos
Eucariotos/genética , Genes/genética , Genoma , Fases de Leitura Aberta/genética , Proteoma/genética , Algoritmos , Animais , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Isoformas de Proteínas/genética , Proteômica/métodos , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos
15.
Mol Cell Proteomics ; 17(12): 2402-2411, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30181344

RESUMO

Proteogenomics and ribosome profiling concurrently show that genes may code for both a large and one or more small proteins translated from annotated coding sequences (CDSs) and unannotated alternative open reading frames (named alternative ORFs or altORFs), respectively, but the stoichiometry between large and small proteins translated from a same gene is unknown. MIEF1, a gene recently identified as a dual-coding gene, harbors a CDS and a newly annotated and actively translated altORF located in the 5'UTR. Here, we use absolute quantification with stable isotope-labeled peptides and parallel reaction monitoring to determine levels of both proteins in two human cells lines and in human colon. We report that the main MIEF1 translational product is not the canonical 463 amino acid MiD51 protein but the small 70 amino acid alternative MiD51 protein (altMiD51). These results demonstrate the inadequacy of the single CDS concept and provide a strong argument for incorporating altORFs and small proteins in functional annotations.


Assuntos
Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fases de Leitura Aberta/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Cromatografia de Afinidade , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Colo/citologia , Éxons , Expressão Gênica , Células HeLa , Humanos , Anotação de Sequência Molecular , Peptídeos/metabolismo , Biossíntese de Proteínas , Modificação Traducional de Proteínas , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem , Sequenciamento Completo do Genoma
16.
Mol Cell Proteomics ; 17(2): 357-372, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29122912

RESUMO

Tissue spatially-resolved proteomics was performed on 3 brain regions, leading to the characterization of 123 reference proteins. Moreover, 8 alternative proteins from alternative open reading frames (AltORF) were identified. Some proteins display specific post-translational modification profiles or truncation linked to the brain regions and their functions. Systems biology analysis performed on the proteome identified in each region allowed to associate sub-networks with the functional physiology of each brain region. Back correlation of the proteins identified by spatially-resolved proteomics at a given tissue localization with the MALDI MS imaging data, was then performed. As an example, mapping of the distribution of the matrix metallopeptidase 3-cleaved C-terminal fragment of α-synuclein (aa 95-140) identified its specific distribution along the hippocampal dentate gyrus. Taken together, we established the molecular physiome of 3 rat brain regions through reference and hidden proteome characterization.


Assuntos
Encéfalo/metabolismo , Proteoma , Animais , Masculino , Proteômica , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Proteomics ; 18(10): e1700058, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28627015

RESUMO

Short ORF-encoded peptides and small proteins in eukaryotes have been hiding in the shadow of large proteins for a long time. Recently, improved identifications in MS-based proteomics and ribosome profiling resulted in the detection of large numbers of small proteins. The variety of functions of small proteins is also emerging. It seems to be the right time to reflect on why small proteins remained invisible. In addition to the obvious technical challenge of detecting small proteins, they were mostly forgotten from annotations and they escaped detection because they were not sought. In this review, we identify conventions that need to be revisited, including the assumption that mature mRNAs carry only one coding sequence. The large-scale discovery of small proteins and of their functions will require changing some paradigms and undertaking the annotation of ORFs that are still largely perceived as irrelevant coding information compared to already annotated coding sequences.


Assuntos
Anotação de Sequência Molecular , Fases de Leitura Aberta , Biossíntese de Proteínas , Proteínas/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Genoma Humano , Genômica , Humanos , Proteínas/genética , RNA Mensageiro/genética , Ribossomos
18.
Elife ; 62017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29083303

RESUMO

Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins.


Assuntos
Eucariotos/genética , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Proteínas/genética , Proteínas/metabolismo , Fases de Leitura Aberta , Biossíntese de Proteínas
19.
EBioMedicine ; 21: 55-64, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28629911

RESUMO

BACKGROUND: Recently, it was demonstrated that proteins can be translated from alternative open reading frames (altORFs), increasing the size of the actual proteome. Top-down mass spectrometry-based proteomics allows the identification of intact proteins containing post-translational modifications (PTMs) as well as truncated forms translated from reference ORFs or altORFs. METHODS: Top-down tissue microproteomics was applied on benign, tumor and necrotic-fibrotic regions of serous ovarian cancer biopsies, identifying proteins exhibiting region-specific cellular localization and PTMs. The regions of interest (ROIs) were determined by MALDI mass spectrometry imaging and spatial segmentation. FINDINGS: Analysis with a customized protein sequence database containing reference and alternative proteins (altprots) identified 15 altprots, including alternative G protein nucleolar 1 (AltGNL1) found in the tumor, and translated from an altORF nested within the GNL1 canonical coding sequence. Co-expression of GNL1 and altGNL1 was validated by transfection in HEK293 and HeLa cells with an expression plasmid containing a GNL1-FLAG(V5) construct. Western blot and immunofluorescence experiments confirmed constitutive co-expression of altGNL1-V5 with GNL1-FLAG. CONCLUSIONS: Taken together, our approach provides means to evaluate protein changes in the case of serous ovarian cancer, allowing the detection of potential markers that have never been considered.


Assuntos
Espectrometria de Massas , Neoplasias Ovarianas/metabolismo , Proteoma , Proteômica , Biomarcadores , Feminino , Humanos , Espectrometria de Massas/métodos , Proteômica/métodos , Biologia de Sistemas/métodos , Microambiente Tumoral
20.
Nucleic Acids Res ; 44(1): 14-23, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26578573

RESUMO

mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Células Eucarióticas/metabolismo , Humanos , Fases de Leitura Aberta , RNA Mensageiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA