Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(12): 2205-2214, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38032892

RESUMO

In mammalian cells, growth factor-induced intracellular signaling and protein synthesis play a critical role in cellular physiology and homeostasis. In the brain's glymphatic system (GS), the water-conducting activity of aquaporin-4 (AQPN-4) membrane channels (expressed in polarized fashion on astrocyte end-feet) mediates the clearance of wastes through the convective transport of fluid and solutes through the perivascular space. The glycoprotein erythropoietin (EPO) has been shown to induce the astrocyte expression of AQPN-4 via signaling through the EPO receptor and the JAK/STAT signaling pathway. Here, we self-assemble EPO in a multivalent fashion onto the surface of semiconductor quantum dots (QDs) (driven by polyhistidine-based self-assembly) to drive the interaction of the bioconjugates with EPOR on human astrocytes (HA). This results in a 2-fold augmentation of JAK/STAT signaling activity and a 1.8-fold enhancement in the expression of AQPN-4 in cultured primary HA compared to free EPO. This translates into a 2-fold increase in the water transport rate in HA cells as measured by the calcein AM water transport assay. Importantly, EPO-QD-induced augmented AQPN-4 expression does not elicit any deleterious effect on the astrocyte viability. We discuss our results in the context of the implications of EPO-nanoparticle (NP) bioconjugates for use as research tools to understand the GS and their potential as therapeutics for the modulation of GS function. More generally, our results illustrate the utility of NP bioconjugates for the controlled modulation of growth factor-induced intracellular signaling.


Assuntos
Aquaporinas , Eritropoetina , Pontos Quânticos , Animais , Humanos , Astrócitos/metabolismo , Receptores da Eritropoetina/metabolismo , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Água/metabolismo , Aquaporinas/metabolismo , Aquaporinas/farmacologia , Mamíferos/metabolismo
2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895815

RESUMO

Over the past several decades, nanoparticles (NPs) have shown promising capabilities in the field of medicine for their applications as vehicles for targeted drug delivery [...].

3.
Bioconjug Chem ; 34(2): 405-413, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731145

RESUMO

In mammalian cells, plasma membrane potential plays vital roles in both physiology and pathology and it is controlled by a network of membrane-resident ion channels. There is considerable interest in the use of nanoparticles (NPs) to control biological functions, including the modulation of membrane potential. The photoexcitation of gold NPs (AuNPs) tethered close to the plasma membrane has been shown to induce membrane depolarization via localized heating of the AuNP surface coupled with the opening of voltage-gated sodium channels. Previous work has employed spherical AuNPs (AuNS) with absorption in the 500-600 nm range for this purpose. However, AuNP materials with absorption at longer wavelengths [e.g., near-infrared (NIR)] would enable greater tissue penetration depth in vivo. We show here the use of new anisotropic-shaped AuNPs [gold nanoflowers (AuNFs)] with broad absorption spanning into the NIR part of the spectrum (∼650-1000 nm). The AuNFs are directly synthesized with bidentate thiolate ligands, which preserves the AuNF's shape and colloidal stability, while facilitating conjugation to biomolecules. We describe the characterization of the AuNF particles and demonstrate that they adhere to the plasma membrane when bioconjugated to PEGylated cholesterol (PEG-Chol) moieties. The AuNF-PEG-Chol mediated the depolarization of rat adrenal medulla pheochromocytoma (PC-12) neuron-like cells more effectively than AuNS-PEG-Chol and unconjugated AuNS and AuNF when photoexcited at ∼561 or ∼640 nm. Importantly, AuNF induction of depolarization had no impact on cellular viability. This work demonstrates anisotropic AuNFs as an enabling nanomaterial for use in cellular depolarization and the spatiotemporal control of cellular activity.


Assuntos
Nanopartículas Metálicas , Ratos , Animais , Ouro , Potenciais da Membrana , Polietilenoglicóis , Mamíferos
4.
Ther Deliv ; 13(8): 403-427, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36416614

RESUMO

Nitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery. Recently, a number of nanoparticle (NP)-based systems are described that address some of these issues by taking advantage of the unique attributes of the NP carrier to effect efficient NO delivery. This review highlights the progress that has been made over the past 5 years in the use of various constructs for the therapeutic delivery of NO.


This review details progress made over the past 5 years in the implementation of various nanoparticle (NP) bioconjugates for the therapeutic delivery of nitric oxide. Various NP formulations including liposomes, polymeric NPs, and hard NPs such as AuNPs and upconversion NPs are covered and we discuss the inherent advantages and challenges in using these materials for the controlled delivery of nitric oxide to cells and tissues.


Assuntos
Nanopartículas , Óxido Nítrico , Excipientes , Meia-Vida , Transdução de Sinais
5.
J Inorg Biochem ; 235: 111935, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932757

RESUMO

Cobalt(III) and rhodium(III) complexes containing the water-soluble porphyrin ligand meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl)porphine (C1S3TPP), [Rh(C1S3TPP)]Nax•nH2O (1) and [Co(C1S3TPP)]Nax•nH2O (2) were prepared from the direct reaction of free porphyrin and metal chloride salts in refluxing MeOH/DMF or EtOH/H2O. Compounds 1 and 2 were characterized using UV-vis and 1H NMR spectroscopies, and high-resolution mass spectrometry. Cell culture based assays of opioid receptor activation showed that while the rhodium complex reduced fentanyl opioid activity 113-fold to an IC50 value of 1.7 µM, the cobalt complex reduced fentanyl activity by 160-fold to an IC50 value of 2.4 µM. An oxidative mechanism for fentanyl breakdown is proposed.


Assuntos
Porfirinas , Ródio , Cobalto/química , Fentanila/farmacologia , Ligantes , Porfirinas/química , Porfirinas/farmacologia , Ródio/química
6.
Nano Lett ; 22(12): 5037-5045, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35580267

RESUMO

DNA nanostructures have proven potential in biomedicine. However, their intracellular interactions─especially cytosolic stability─remain mostly unknown and attempts to discern this are confounded by the complexities of endocytic uptake and entrapment. Here, we bypass the endocytic uptake and evaluate the DNA structural stability directly in live cells. Commonly used DNA structures─crosshairs and a tetrahedron─were labeled with a multistep Förster resonance energy transfer dye cascade and microinjected into the cytosol of transformed and primary cells. Energy transfer loss, as monitored by fluorescence microscopy, reported the structure's direct time-resolved breakdown in cellula. The results showed rapid degradation of the DNA crosshair within 20 min, while the tetrahedron remained consistently intact for at least 1 h postinjection. Nuclease assays in conjunction with a current understanding of the tetrahedron's torsional rigidity confirmed its higher stability. Such studies can inform design parameters for future DNA nanostructures where programmable degradation rates may be required.


Assuntos
Nanoestruturas , Citosol , DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência , Nanoestruturas/química
7.
Pharmaceuticals (Basel) ; 15(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631430

RESUMO

The elevated intracellular production of or extracellular exposure to reactive oxygen species (ROS) causes oxidative stress to cells, resulting in deleterious irreversible biomolecular reactions (e.g., lipid peroxidation) and disease progression. The use of low-molecular weight antioxidants, such as 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), as ROS scavengers fails to achieve the desired efficacy because of their poor or uncontrolled cellular uptake and off-target effects, such as dysfunction of essential redox homeostasis. In this study, we fabricated a liquid crystal nanoparticle (LCNP) conjugate system with the fluorescent dye perylene (PY) loaded in the interior and poly (ethylene glycol) (PEG) decorated on the surface along with multiple molecules of TEMPO (PY-LCNP-PEG/TEMPO). PY-LCNP-PEG/TEMPO exhibit enhanced cellular uptake, and efficient ROS-scavenging activity in live cells. On average, the 120 nm diameter PY-LCNPs were conjugated with >1800 molecules of TEMPO moieties on their surface. PY-LCNP-PEG/TEMPO showed significantly greater reduction in ROS activity and lipid peroxidation compared to free TEMPO when the cells were challenged with ROS generating agents, such as hydrogen peroxide (H2O2). We suggest that this is due to the increased local concentration of TEMPO molecules on the surface of the PY-LCNP-PEG/TEMPO NPs, which efficiently bind to the plasma membrane and enter cells. Overall, these results demonstrate the enhanced capability of TEMPO-conjugated LCNPs to protect live cells from oxidative stress by effectively scavenging ROS and reducing lipid peroxidation.

8.
ACS Sens ; 6(5): 1695-1703, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33871990

RESUMO

Nitric oxide (NO) is a critical cell signaling molecule with important roles in both normal cellular physiology and pathology. Over the past 20 years, multiple sensing modalities have been developed for the intracellular synthesis (endogenous) and release (exogenous) of NO. In this review, we survey the historical progression of NO sensing platforms, highlight the current state of the art, and offer a forward-looking view of how we expect the field of NO sensing to develop in the context of recent advances in bio-nanotechnology and nanoscale cellular biosensors.


Assuntos
Técnicas Biossensoriais , Óxido Nítrico , Nanotecnologia
9.
Molecules ; 25(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271886

RESUMO

In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Lipossomos/química , Preparações Farmacêuticas/administração & dosagem , Animais , Humanos , Preparações Farmacêuticas/química
10.
Photochem Photobiol ; 96(4): 834-844, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083762

RESUMO

We report a Förster resonance energy transfer (FRET)-based imaging ensemble for the visualization of membrane potential in living cells. A water-soluble poly(fluorene-cophenylene) conjugated polyelectrolyte (FsPFc10) serves as a FRET donor to a voltage-sensitive dye acceptor (FluoVolt™ ). We observe FRET between FsPFc10 and FluoVolt™ , where the enhancement in FRET-sensitized emission from FluoVolt™ is measured at various donor/acceptor ratios. At a donor/acceptor ratio of 1, the excitation of FluoVolt™ in a FRET configuration results in a three-fold enhancement in its fluorescence emission (compared to when it is excited directly). FsPFc10 efficiently labels the plasma membrane of HEK 293T/17 cells and remains resident with minimal cellular internalization for ~ 1.5 h. The successful plasma membrane-associated colabeling of the cells with the FsPFc10-FluoVolt™ donor-acceptor pair is confirmed by dual-channel confocal imaging. Importantly, cells labeled with FsPFc10 show excellent cellular viability with no adverse effect on cell membrane depolarization. During depolarization of membrane potential, HEK 293T/17 cells labeled with the donor-acceptor FRET pair exhibit a greater fluorescence response in FluoVolt™ emission relative to when FluoVolt™ is used as the sole imaging probe. These results demonstrate the conjugated polyelectrolyte to be a new class of membrane labeling fluorophore for use in voltage sensing schemes.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Potenciais da Membrana , Polieletrólitos/química , Ânions/química , Membrana Celular/química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Técnicas de Patch-Clamp
11.
ACS Nano ; 14(3): 2659-2677, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32078291

RESUMO

The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.


Assuntos
Membrana Celular/química , Músculos/química , Nanopartículas/química , Neurônios/química , Humanos , Potenciais da Membrana , Músculos/citologia , Neurônios/citologia
12.
Bioconjug Chem ; 31(3): 567-576, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31894966

RESUMO

The photoactivation of plasma-membrane-tethered gold nanoparticles (AuNPs) for the photothermally driven depolarization of membrane potential has recently emerged as a new platform for the controlled actuation of electrically active cells. In this report, we characterize the relationship between AuNP concentration and AuNP-membrane separation distance with the efficiency of photoactivated plasma membrane depolarization. We show in differentiated rat pheochromocytoma (PC-12) cells that AuNPs capped with poly(ethylene glycol) (PEG)-cholesterol ligands localize to the plasma membrane and remain resident for up to 1 h. The efficiency of AuNP-mediated depolarization is directly dependent on the concentration of the NPs on the cell surface. We further show that the efficiency of AuNP-mediated photothermal depolarization of membrane potential is directly dependent on the tethering distance between the AuNP and the plasma membrane, which we control by iteratively tuning the length of the PEG linker. Importantly, the AuNP conjugates do not adversely affect cell viability under the photoactivation conditions required for membrane depolarization. Our results demonstrate the fine control that can be elicited over AuNP bioconjugates and establishes principles for the rational design of functional nanomaterials for the control of electrically excitable cells.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ouro/química , Ouro/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Nanopartículas Metálicas/química , Animais , Colesterol/química , Relação Dose-Resposta a Droga , Células PC12 , Polietilenoglicóis/química , Ratos
13.
Pharmaceutics ; 11(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635367

RESUMO

Nanoparticle (NP)-mediated drug delivery (NMDD) for active targeting of diseases is a primary goal of nanomedicine. NPs have much to offer in overcoming the limitations of traditional drug delivery approaches, including off-target drug toxicity and the need for the administration of repetitive doses. In the last decade, one of the main foci in NMDD has been the realization of NP-mediated drug formulations for active targeted delivery to diseased tissues, with an emphasis on cellular and subcellular targeting. Advances on this front have included the intricate design of targeted NP-drug constructs to navigate through biological barriers, overcome multidrug resistance (MDR), decrease side effects, and improve overall drug efficacy. In this review, we survey advancements in NP-mediated drug targeting over the last five years, highlighting how various NP-drug constructs have been designed to achieve active targeted delivery and improved therapeutic outcomes for critical diseases including cancer, rheumatoid arthritis, and Alzheimer's disease. We conclude with a survey of the current clinical trial landscape for active targeted NP-drug delivery and how we envision this field will progress in the near future.

14.
Bioconjug Chem ; 30(3): 525-530, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735042

RESUMO

Multidrug resistance (MDR) is a significant challenge in the treatment of many types of cancers as membrane-associated transporters actively pump drugs out of the cell, limiting therapeutic efficacy. While nanoparticle (NP)-based therapeutics have emerged as a mechanism for overcoming MDR, they often rely on the delivery of multiple anticancer drugs, nucleic acid hybrids, or MDR pump inhibitors. The effectiveness of these strategies, however, can be limited by their off-target toxicity or the need for genetic transfection. In this paper, we describe a NP-peptide-drug bioconjugate that achieves significant cell killing in MDR-positive cancer cells without the need for additional drugs. We use a quantum dot (QD) as a central scaffold to append two species of peptide, a cell-uptake peptide to facilitate endocytic internalization and a peptide-drug conjugate that is susceptible to cleavage by esterases found within the endocytic pathway. This approach relies on spatiotemporal control over drug release, where endosomes traffic drug away from membrane-resident pumps and release it closer to the nucleus. Cellular internalization studies showed high uptake of the NP-drug complex and nuclear localization of the drug after 48 h in MDR-positive cells. Additionally, cellular proliferation assays demonstrated a 40% decrease in cell viability for the NP-drug bioconjugate compared to free drug, confirming the utility of this system in overcoming MDR in cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanoconjugados/química , Peptídeos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacocinética
15.
ACS Chem Neurosci ; 10(3): 1478-1487, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30589551

RESUMO

Gold nanoparticles (AuNPs) attached to the extracellular leaflet of the plasma membrane of neurons can enable the generation of action potentials (APs) in response to brief pulses of light. Recently described techniques to stably bind AuNP bioconjugates directly to membrane proteins (ion channels) in neurons enable robust AP generation mediated by the photoexcited conjugate. However, a strategy that binds the AuNP to the plasma membrane in a non protein-specific manner could represent a simple, single-step means of establishing light-responsiveness in multiple types of excitable neurons contained in the same tissue. On the basis of the ability of cholesterol to insert into the plasma membrane, here we test whether AuNP functionalization with linear dihydrolipoic acid-poly(ethylene) glycol (DHLA-PEG) chains that are distally terminated with cholesterol (AuNP-PEG-Chol) can enable light-induced AP generation in neurons. Dorsal root ganglion (DRG) neurons of rat were labeled with 20 nm diameter spherical AuNP-PEG-Chol conjugates wherein ∼30% of the surface ligands (DHLA-PEG-COOH) were conjugated to PEG-Chol. Voltage recordings under current-clamp conditions showed that DRG neurons labeled in this manner exhibited a capacity for AP generation in response to microsecond and millisecond pulses of 532 nm light, a property attributable to the close tethering of AuNP-PEG-Chol conjugates to the plasma membrane facilitated by the cholesterol moiety. Light-induced AP and subthreshold depolarizing responses of the DRG neurons were similar to those previously described for AuNP conjugates targeted to channel proteins using large, multicomponent immunoconjugates. This likely reflected the AuNP-PEG-Chol's ability, upon plasmonic light absorption and resultant slight and rapid heating of the plasma membrane, to induce a concomitant transmembrane depolarizing capacitive current. Notably, AuNP-PEG-Chol delivered to DRG neurons by inclusion in the buffer contained in the recording pipet/electrode enabled similar light-responsiveness, consistent with the activity of AuNP-PEG-Chol bound to the inner (cytofacial) leaflet of the plasma membrane. Our results demonstrate the ability of AuNP-PEG-Chol conjugates to confer timely stable and direct responsiveness to light in neurons. Further, this strategy represents a general approach for establishing excitable cell photosensitivity that could be of substantial advantage for exploring a given tissue's suitability for AuNP-mediated photocontrol of neural activity.


Assuntos
Colesterol/administração & dosagem , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Neurônios/metabolismo , Estimulação Luminosa/métodos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
16.
Bioconjug Chem ; 29(8): 2701-2714, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990422

RESUMO

Current challenges in photodynamic therapy (PDT) include both the targeted delivery of the photosensitizer (PS) to the desired cellular location and the maintenance of PS efficacy. Zinc phthalocyanine (ZnPc), a macrocyclic porphyrin and a potent PS for PDT, undergoes photoexcitation to generate reactive singlet oxygen that kills cells efficiently, particularly when delivered to the plasma membrane. Like other commonly employed PS, ZnPc is highly hydrophobic and prone to self-aggregation in aqueous biological media. Further, it lacks innate subcellular targeting specificity. Cumulatively, these attributes pose significant challenges for delivery via traditional systemic drug delivery modalities. Here, we report the development and characterization of a liquid crystal nanoparticle (LCNP)-based formulation for the encapsulation and targeted tethering of ZnPc to the plasma membrane bilayer. ZnPc was coloaded with the organic fluorophore, perylene (PY), in the hydrophobic polymeric matrix of the LCNP core. PY facilitated the fluorescence-based tracking of the LCNP carrier while also serving as a Förster resonance energy transfer (FRET) donor to the ZnPc acceptor. This configuration availed efficient singlet oxygen generation via enhanced excitation of ZnPc from multiple surrounding PY energy donors. When excited in a FRET configuration, cuvette-based assays revealed that singlet oxygen generation from the ZnPc was ∼1.8-fold greater and kinetically 12 times faster compared to when the ZnPc was excited directly. The specific tethering of the LCNPs to the plasma membrane of HEK 293 T/17 and HeLa cells was achieved by surface functionalization of the NPs with PEGylated cholesterol. In HeLa cells, LCNPs coloaded with PY and ZnPc, when photoexcited in a FRET configuration, mediated 70% greater cell killing compared to LCNPs containing ZnPc alone (direct excitation of ZnPc). This was attributed to a significant increase of the oxidative stress in the cells during the PDT. Overall, this work details the ability of the LCNP platform to facilitate (1) the specific tethering of the PY-ZnPc FRET pair to the plasma membrane and (2) the FRET-mediated, augmented singlet oxygen generation for enhanced PDT relative to the direct excitation of ZnPc alone.


Assuntos
Sistemas de Liberação de Medicamentos , Indóis/uso terapêutico , Cristais Líquidos , Nanopartículas , Compostos Organometálicos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/administração & dosagem , Isoindóis , Compostos Organometálicos/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta , Compostos de Zinco
17.
Molecules ; 23(7)2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037071

RESUMO

A heterobifunctional reactive oxygen species (ROS)-responsive linker for directed drug assembly onto and delivery from a quantum dot (QD) nanoparticle carrier was synthesized and coupled to doxorubicin using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)/sulfo⁻NHS coupling. The doxorubicin conjugate was characterized using ¹H NMR and LC-MS and subsequently reacted under conditions of ROS formation (Cu2+/H2O2) resulting in successful and rapid thioacetal oxidative cleavage, which was monitored using ¹H NMR.


Assuntos
Doxorrubicina/síntese química , Doxorrubicina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nanopartículas/química , Oxirredução/efeitos dos fármacos , Peptídeos/química , Pontos Quânticos
18.
Bioconjug Chem ; 29(7): 2455-2467, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29851467

RESUMO

The ability to control the intracellular release of drug cargos from nanobioconjugate delivery scaffolds is critical for the successful implementation of nanoparticle (NP)-mediated drug delivery. This is particularly true for hard NP carriers such as semiconductor quantum dots (QDs) and gold NPs. Here, we report the development of a QD-based multicomponent drug release system that, when delivered to the cytosol of mammalian cells, is triggered to release its drug cargo by the simple addition of a competitive ligand to the extracellular medium. The ensemble construct consists of the central QD scaffold that is decorated with a fixed number of maltose binding proteins (MBPs). The MBP binding site is loaded with dye or drug conjugates of the maltose analogue beta-cyclodextrin (ßCD) to yield a QD-MBP-ßCD ensemble conjugate. The fidelity of conjugate assembly is monitored by Förster resonance energy transfer (FRET) from the QD donor to the dye/drug acceptor. Microplate-based FRET assays demonstrated that the ßCD conjugate was released from the MBP binding pocket by maltose addition with an affinity that matched native MBP-maltose binding interactions. In COS-1 cells, the microinjected assembled conjugates remained stably intact in the cytosol until the addition of maltose to the extracellular medium, which underwent facilitated uptake into the cell. Live cell FRET-based confocal microscopy imaging captured the kinetics of realtime release of the ßCD ligand as a function of extracellular maltose concentration. Our results demonstrate the utility of the self-assembled QD-MBP-ßCD system to facilitate intracellular drug release that is triggered extracellularly through the simple addition of a well-tolerated nutrient and is not dependent on the use of light, magnetic field, ultrasound, or other traditional methods of stimulated drug release. We expect this extracellularly triggered drug release modality to be useful for the in vitro characterization of new drug candidates intended for systemic delivery/actuation and potentially for on-demand drug release in vivo.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Proteínas Ligantes de Maltose/química , Pontos Quânticos/química , beta-Ciclodextrinas/química , Animais , Sítios de Ligação , Ligação Competitiva , Células COS , Chlorocebus aethiops , Humanos , Maltose/farmacologia
19.
Ther Deliv ; 9(7): 527-545, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29943689

RESUMO

The systemic delivery of drugs to the body via circulation after oral administration is a preferred method of drug administration during cancer treatment given its ease of implementation. However, the physicochemical properties of many current anticancer drugs limit their effectiveness when delivered by systemic routes. The use of nanoparticles (NPs) has emerged as an effective means of overcoming the inherent limitations of systemic drug delivery. We provide herein an overview of various NP formulations that facilitate improvements in the efficacy of various anticancer drugs compared with the free drug. This review will be useful to the reader who is interested in the role NP technology is playing in shaping the future of chemotherapeutic drug delivery and disease treatment.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica/métodos , Administração Oral , Animais , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Humanos , Resultado do Tratamento
20.
Int J Pharm ; 545(1-2): 64-73, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29709616

RESUMO

In this study, we developed a peptide-dendrimer-drug conjugate system for the pH-triggered direct cytosolic delivery of the cancer chemotherapeutic doxorubicin (DOX) using the pH Low Insertion Peptide (pHLIP). We synthesized a pHLIP-dendrimer-DOX conjugate in which a single copy of pHLIP displayed a generation three dendrimer bearing multiple copies of DOX via disulfide linkages. Biophysical analysis showed that both the dendrimer and a single DOX conjugate inserted into membrane bilayers in a pH-dependent manner. Time-resolved confocal microscopy indicate the single DOX conjugate may undergo a faster rate of membrane translocation, due to greater nuclear localization of DOX at 24 h and 48 h post delivery. At 72 h, however, the levels of DOX nuclear accumulation for both constructs were identical. Cytotoxicity assays revealed that both constructs mediated ∼80% inhibition of cellular proliferation at 10 µM, the dendrimer complex exhibited a 17% greater cytotoxic effect at lower concentrations and greater than three-fold improvement in IC50 over free DOX. Our findings show proof of concept that the dendrimeric display of DOX on the pHLIP carrier (1) facilitates the pH-dependent and temporally-controlled release of DOX to the cytosol, (2) eliminates the endosomal sequestration of the drug cargo, and (3) augments DOX cytotoxicity relative to the free drug.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Dendrímeros/química , Dissulfetos/química , Doxorrubicina/metabolismo , Portadores de Fármacos , Endocitose , Proteínas de Membrana/química , Neoplasias do Colo do Útero/metabolismo , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Composição de Medicamentos , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Membranas Artificiais , Microscopia Confocal , Oxirredução , Tecnologia Farmacêutica/métodos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA