Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 28(9): 1765-1784, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36387973

RESUMO

Several families of transcription factors (TFs) control the progression of senescence. Many key TFs belonging to the WRKY family have been described to play crucial roles in the regulation of leaf senescence, mainly in Arabidopsis thaliana. However, little is known about senescence-associated WRKY members in floricultural species. Delay of senescence in leaves and petals of Petunia hybrida, a worldwide ornamental crop are highly appreciated traits. In this work, starting from 28 differentially expressed WRKY genes of A. thaliana during the progression of leaf senescence, we identified the orthologous in P. hybrida and explored the expression profiles of 20 PhWRKY genes during the progression of natural (age-related) leaf and corolla senescence as well as in the corollas of flowers undergoing pollination-induced senescence. Simultaneous visualization showed consistent and similar expression profiles of PhWRKYs during natural leaf and corolla senescence, although weak expression changes were observed during pollination-induced senescence. Comparable expression trends between PhWRKYs and the corresponding genes of A. thaliana were observed during leaf senescence, although more divergence was found in petals of pollinated petunia flowers. Integration of expression data with phylogenetics, conserved motif and cis-regulatory element analyses were used to establish a list of candidates that could regulate more than one senescence process. Our results suggest that several members of the WRKY family of TFs are tightly linked to the regulation of senescence in P. hybrida. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01243-y.

2.
Plant Sci ; 287: 110195, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31481223

RESUMO

Progression of leaf senescence depends on several families of transcription factors. In Arabidopsis, the NAC family plays crucial roles in the modulation of leaf senescence; however, the mechanisms involved in this NAC-mediated regulation have not been extensively explored in agronomic species. Petunia hybrida is an ornamental plant that is commonly found worldwide. Decreasing the rate of leaf and petal senescence in P. hybrida is essential for maintaining plant quality. In this study, we examined the NAC-mediated networks involved in regulating senescence in this species. From 41 NAC genes, the expression of which changed in Arabidopsis during leaf senescence, we identified 29 putative orthologs in P. hybrida. Analysis using quantitative real-time-PCR indicated that 24 genes in P. hybrida changed their transcript levels during natural leaf senescence. Leaf-expressed genes were subsequently assessed in petals undergoing natural and pollination-induced senescence. Expression data and phylogenetic analysis were used to generate a list of 10-15 candidate genes; 7 of these were considered key regulatory candidates in senescence because of their consistent upregulation in the three senescence processes examined. Altogether, we identified common and distinct patterns of gene expression at different stages of leaf and petal development and during progression of senescence. The results obtained in this study will contribute to the understanding of NAC-mediated regulatory networks in petunia.


Assuntos
Petunia/genética , Fatores de Transcrição/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Petunia/fisiologia , Filogenia , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , Fatores de Transcrição/genética , Regulação para Cima
3.
Genome Announc ; 5(30)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751389

RESUMO

In this study, we determined for the first time the complete genomic sequence of an Argentinian isolate of Potato leafroll virus (PLRV), the type species of the genus Polerovirus The isolate sequenced came from a Solanum tuberosum plant that had been naturally infected with the virus. Isolate PLRV-AR had a nucleotide sequence identity between 94.4 and 97.3% with several known PLRV isolates worldwide.

4.
Phytopathology ; 107(3): 369-376, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035870

RESUMO

An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.


Assuntos
Afídeos/virologia , Genoma Viral/genética , Gossypium/virologia , Luteoviridae/classificação , Doenças das Plantas/virologia , Animais , Luteoviridae/genética , Luteoviridae/isolamento & purificação
5.
Environ Toxicol ; 30(5): 589-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915594

RESUMO

Epidemiological studies have shown that pollution derived from industrial and vehicular transportation induces adverse health effects causing broad ambient respiratory diseases. Therefore, air pollution should be taken into account when microbial diseases are evaluated. Environmental mycobacteria (EM) are opportunist pathogens that can affect a variety of immune compromised patients, which impacts significantly on human morbidity and mortality. The aim of this study was to evaluate the effect of residual oil fly ash (ROFA) pre-exposure on the pulmonary response after challenge with opportunistic mycobacteria by means of an acute short-term in vivo experimental animal model. We exposed BALB/c mice to ROFA and observed a significant reduction on bacterial clearance at 24 h post infection. To study the basis of this impaired response four groups of animals were instilled with (a) saline solution (Control), (b) ROFA (1 mg kg(-1) BW), (c) ROFA and EM-infected (Mycobacterium phlei, 8 × 10(6) CFU), and (d) EM-infected. Animals were sacrificed 24 h postinfection and biomarkers of lung injury and proinflammatory madiators were examined in the bronchoalveolar lavage. Our results indicate that ROFA was able to produce an acute pulmonary injury characterized by an increase in bronchoalveolar polymorphonuclear (PMN) cells influx and a rise in O2 (-) generation. Exposure to ROFA before M. phlei infection reduced total cell number and caused a significant decline in PMN cells recruitment (p < 0.05), O2 (-) generation, TNFα (p < 0.001), and IL-6 (p < 0.001) levels. Hence, our results suggest that, in this animal model, the acute short-term pre-exposure to ROFA reduces early lung response to EM infection.


Assuntos
Poluentes Atmosféricos/toxicidade , Cinza de Carvão/toxicidade , Imunidade Inata/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Infecções por Mycobacterium/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Interleucina-6/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Mycobacterium/patologia , Mycobacterium phlei , Fator de Necrose Tumoral alfa/metabolismo
6.
Virus Res ; 180: 70-5, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24370867

RESUMO

Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection.


Assuntos
Interações Hospedeiro-Patógeno , Luteoviridae/imunologia , Luteoviridae/fisiologia , Nicotiana/imunologia , Nicotiana/virologia , Interferência de RNA , Proteínas Virais/metabolismo , Agrobacterium/genética , Transgenes
7.
Virus Res ; 175(1): 64-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623981

RESUMO

Cotton blue disease is the most important viral disease of cotton in the southern part of South America. Its etiological agent, cotton leafroll dwarf virus (CLRDV), is specifically transmitted to host plants by the aphid vector (Aphis gossypii) and any attempt to perform mechanical inoculations of this virus into its host has failed. This limitation has held back the study of this virus and the disease it causes. In this study, a full-length cDNA of CLRDV was constructed and expressed in vivo under the control of cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system for the cloned cDNA construct of CLRDV was developed. Northern and immunoblot analyses showed that after several weeks the replicon of CLRDV delivered by Agrobacterium tumefaciens in Gossypium hirsutum plants gave rise to a systemic infection and typical blue disease symptoms correlated to the presence of viral RNA and P3 capsid protein. We also demonstrated that the virus that accumulated in the agroinfected plants was transmissible by the vector A. gossypii. This result confirms the production of biologically active transmissible virions. In addition, the clone was infectious in Nicotiana benthamiana plants which developed interveinal chlorosis three weeks postinoculation and CLRDV was detected both in the inoculated and systemic leaves. Attempts to agroinfect Arabidopsis thaliana plants were irregularly successful. Although no symptoms were observed, the P3 capsid protein as well as the genomic and subgenomic RNAs were irregularly detected in systemic leaves of some agroinfiltrated plants. The inefficient infection rate infers that A. thaliana is a poor host for CLRDV. This is the first report on the construction of a biologically-active infectious full-length clone of a cotton RNA virus showing successful agroinfection of host and non-host plants. The system herein developed will be useful to study CLRDV viral functions and plant-virus interactions using a reverse genetic approach.


Assuntos
Gossypium/virologia , Luteoviridae/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Agrobacterium tumefaciens/genética , Animais , Afídeos/virologia , Arabidopsis/virologia , Clonagem Molecular , Expressão Gênica , Genoma Viral , Luteoviridae/genética , América do Sul , Transformação Genética
8.
Toxicol In Vitro ; 26(6): 1001-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22548959

RESUMO

Epidemiological studies have shown that pollution derived from industrial and vehicular transportation provokes adverse health effects causing broad spectrum of ambient respiratory diseases. Therefore, air pollution should be taken into account when microbial diseases are evaluated. Environmental mycobacteria (EM) are opportunist pathogens in a variety of immunocompromised patients eliciting significant impact on human morbidity and mortality. The aim of this study was to evaluate the in vitro effects of residual oil fly ash (ROFA) on the alveolar macrophages (AMs) response to opportunistic bacteria. AMs from young Wistar rats were obtained by bronchoalveolar lavage and co-cultured with Mycobacterium phlei (MOI 10). We exposed AM cultures to ROFA to characterize the effect of low ROFA concentrations (0, 2.5, and 5µg/ml) and evaluated the response of pre-exposed AM against the bacilli. Low ROFA concentrations induced superoxide anion and nitrites production (p<0.001). Pre-exposure to ROFA (2.5 and 5µg/ml) caused a significant reduction on TNFα (p<0.001) and superoxide anion (p<0.001) production but, did not modify the nitrite production when AM were co-cultured with M. phlei. In addition, ROFA significantly diminished AM killing ability in culture (p<0.001). Hence, our results indicate that pre-exposure to low levels of ROFA modifies the innate pulmonary defence mechanisms against environmental mycobacteria.


Assuntos
Cinza de Carvão/toxicidade , Poluentes Ambientais/toxicidade , Imunidade Inata/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/imunologia , Animais , Macrófagos Alveolares/imunologia , Masculino , Mycobacterium phlei/imunologia , Nitritos/imunologia , Fagocitose/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxidos/imunologia , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA