Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Mater Today Bio ; 26: 101065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706731

RESUMO

The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.

2.
J Pers Med ; 14(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38673003

RESUMO

Fracture pattern acquisition and representation in human bones play a crucial role in medical simulation, diagnostics, and treatment planning. This article presents a comprehensive review of methodologies employed in acquiring and representing bone fracture patterns. Several techniques, including segmentation algorithms, curvature analysis, and deep learning-based approaches, are reviewed to determine their effectiveness in accurately identifying fracture zones. Additionally, diverse methods for representing fracture patterns are evaluated. The challenges inherent in detecting accurate fracture zones from medical images, the complexities arising from multifragmentary fractures, and the need to automate fracture reduction processes are elucidated. A detailed analysis of the suitability of each representation method for specific medical applications, such as simulation systems, surgical interventions, and educational purposes, is provided. The study explores insights from a broad spectrum of research articles, encompassing diverse methodologies and perspectives. This review elucidates potential directions for future research and contributes to advancements in comprehending the acquisition and representation of fracture patterns in human bone.

3.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063689

RESUMO

The need to replace conventional fuels with renewable sources is a great challenge for the science community. H2 is a promising alternative due to its high energy density and availability. H2 generation from formic acid (FA) decomposition occurred in a batch and a packed-bed flow reactor, in mild conditions, using a 2% Pd6Zn4/HHT (high heated treated) catalyst synthesised via the sol-immobilisation method. Experimental and theoretical studies took place, and the results showed that in the batch system, the conversion was enhanced with increasing reaction temperature, while in the continuous flow system, the conversion was found to decrease due to the deactivation of the catalyst resulting from the generation of the poisoning CO. Computational fluid dynamics (CFD) studies were developed to predict the conversion profiles, which demonstrated great validation with the experimental results. The model can accurately predict the decomposition of FA as well as the deactivation that occurs in the continuous flow system. Of significance was the performance of the packed-bed flow reactor, which showed improved FA conversion in comparison to the batch reactor, potentially leading to the utilisation of continuous flow systems for future fuel cell applications for on-site H2 production.

4.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139604

RESUMO

Future GRACE-like geodesy missions could benefit from adopting accelerometer technology akin to that of the LISA Pathfinder, which employed laser interferometric readout at the sub-picometer level in addition to the conventional capacitive sensing, which is at best at the level of 100 pm. Improving accelerometer performance holds great potential to enhance the scientific output of forthcoming missions, carrying invaluable implications for research in climate, water resource management, and disaster risk reduction. To reach sub-picometer displacement sensing precision in the millihertz range, laser interferometers rely on suppression of laser-frequency noise by several orders of magnitude. Many optical frequency stabilization methods are available with varying levels of complexity, size, and performance. In this paper, we describe the performance of a Mach-Zehnder interferometer based on a compact monolithic optic. The setup consists of a commercial fiber injector, a custom-designed pentaprism used to split and recombine the laser beam, and two photoreceivers placed at the complementary output ports of the interferometer. The structural stability of the prism is transferred to the laser frequency via amplification, integration, and feedback of the balanced-detection signal, achieving a fractional frequency instability better than 6 parts in 1013, corresponding to an interferometer pathlength stability better than 1pm/Hz. The prism was designed to host a second interferometer to interrogate the position of a test mass. This optical scheme has been dubbed "single-element dual-interferometer" or SEDI.

5.
Adv Healthc Mater ; 12(29): e2301396, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37449943

RESUMO

A functional limbal epithelial stem cells (LSC) niche is a vital element in the regular renewal of the corneal epithelium by LSCs and maintenance of good vision. However, little is known about its unique structure and mechanical properties on LSC regulation, creating a significant gap in development of LSC-based therapies. Herein, the effect of mechanical and architectural elements of the niche on human pluripotent derived LSCs (hPSC-LSC) phenotype and growth is investigated in vitro. Specifically, three formulations of polyacrylamide gels with different controlled stiffnesses are used for culture and characterization of hPSC-LSCs from different stages of differentiation. In addition, limbal mimicking topography in polydimethylsiloxane is utilized for culturing hPSC-LSCs at early time point of differentiation. For comparison, the expression of selected key proteins of the corneal cells is analyzed in their native environment through whole mount staining of human donor corneas. The results suggest that mechanical response and substrate preference of the cells is highly dependent on their developmental stage. In addition, data indicate that cells may carry possible mechanical memory from previous culture matrix, both highlighting the importance of mechanical design of a functional in vitro limbus model.


Assuntos
Limbo da Córnea , Células-Tronco , Humanos , Limbo da Córnea/metabolismo , Córnea , Fenótipo , Diferenciação Celular
6.
Chemistry ; 29(61): e202301740, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37522641

RESUMO

The design of highly active and structurally well-defined catalysts has become a crucial issue for heterogeneous catalysed reactions while reducing the amount of catalyst employed. Beside conventional synthetic routes, the employment of polynuclear transition metal complexes as catalysts or catalyst precursors has progressively intercepted a growing interest. These well-defined species promise to deliver catalytic systems where a strict control on the nuclearity allows to improve the catalytic performance while reducing the active phase loading. This study describes the development of a highly active and reusable palladium-based catalyst on alumina (Pd8 /Al2 O3 ) for Suzuki cross-coupling reactions. An octanuclear tiara-like palladium complex was selected as active phase precursor to give isolated Pd-clusters of ca. 1 nm in size on Al2 O3 . The catalyst was thoroughly characterised by several complementary techniques to assess its structural and chemical nature. The high specific activity of the catalyst has allowed to carry out the cross-coupling reaction in 30 min using only 0.12 mol % of Pd loading under very mild and green reaction conditions. Screening of various substrates and selectivity tests, combined with recycling and benchmarking experiments, have been used to highlight the great potentialities of this new Pd8 /Al2 O3 catalyst.

7.
Carbohydr Polym ; 317: 121095, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364945

RESUMO

Cellulose nanofibrils (CNFs) are increasingly used as precursors for foams, films and composites, where water interactions are of great importance. In this study, we used willow bark extract (WBE), an underrated natural source of bioactive phenolic compounds, as a plant-based modifier for CNF hydrogels, without compromising their mechanical properties. We found that the introduction of WBE into both native, mechanically fibrillated CNFs and TEMPO-oxidized CNFs increased considerably the storage modulus of the hydrogels and reduced their swelling ratio in water up to 5-7 times. A detailed chemical analysis revealed that WBE is composed of several phenolic compounds in addition to potassium salts. Whereas the salt ions reduced the repulsion between fibrils and created denser CNF networks, the phenolic compounds - which adsorbed readily on the cellulose surfaces - played an important role in assisting the flowability of the hydrogels at high shear strains by reducing the flocculation tendency, often observed in pure and salt-containing CNFs, and contributed to the structural integrity of the CNF network in aqueous environment. Surprisingly, the willow bark extract exhibited hemolysis activity, which highlights the importance of more thorough investigations of biocompatibility of natural materials. WBE shows great potential for managing the water interactions of CNF-based products.


Assuntos
Celulose , Nanofibras , Celulose/química , Hidrogéis/química , Água , Nanofibras/química
8.
Chem Rev ; 123(5): 2200-2241, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36720130

RESUMO

This review presents recent advances regarding biomass-based nanomaterials, focusing on their surface interactions. Plant biomass-based nanoparticles, like nanocellulose and lignin from industry side streams, hold great potential for the development of lightweight, functional, biodegradable, or recyclable material solutions for a sustainable circular bioeconomy. However, to obtain optimal properties of the nanoparticles and materials made thereof, it is crucial to control the interactions both during particle production and in applications. Herein we focus on the current understanding of these interactions. Solvent interactions during particle formation and production, as well as interactions with water, polymers, cells and other components in applications, are addressed. We concentrate on cellulose and lignin nanomaterials and their combination. We demonstrate how the surface chemistry of the nanomaterials affects these interactions and how excellent performance is only achieved when the interactions are controlled. We furthermore introduce suitable methods for probing interactions with nanomaterials, describe their advantages and challenges, and introduce some less commonly used methods and discuss their possible applications to gain a deeper understanding of the interfacial chemistry of biobased nanomaterials. Finally, some gaps in current understanding and interesting emerging research lines are identified.

9.
Healthcare (Basel) ; 12(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38200967

RESUMO

This article presents an exploration of conversational chatbots designed to alleviate loneliness among older adults. In addition to technical evaluation, it delves into effective communication between these systems and this demographic group, considering linguistic nuances, communicative preferences, and specific emotional needs. The intrinsic importance of chatbots as innovative solutions in combating loneliness is highlighted, emphasizing their ability to be understanding and empathetic allies, contributing to emotional well-being and socialization. The article explores how improved emotional well-being can positively impact the health and quality of life of older adults. The methodology, rooted in triangulation between a literature review and qualitative research through interviews and focus groups with older adults, provides a comprehensive insight into the findings. Ethical, technical, and design considerations such as privacy, autonomy, technology adaptation, and usability are also addressed. The article concludes with practical recommendations for developing user-friendly interfaces that encourage the active participation of older adults in chatbots. This holistic approach not only analyzes the technical effectiveness of chatbots in mitigating loneliness in older adults but delves into human, ethical, and practical aspects, enriching the understanding and implementation of these agents for social and emotional support.

10.
Langmuir ; 38(32): 9917-9927, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35930798

RESUMO

Keratin is a potential raw material to meet the growing demand for bio-based materials with special properties. Keratin can be obtained from feathers, a by-product from the poultry industry. One approach for keratin valorization is to use the protein to improve the properties of already existing cellulose and lignin-based materials to meet the requirements for replacing fossil-based plastics. To ensure a successful combination of keratin with lignocellulosic building blocks, keratin must have an affinity to these substrates. Hence, we used quartz crystal microbalance with a dissipation monitoring (QCM-D) technique to get a detailed understanding of the adsorption of keratin peptides onto lignocellulosic substrates and how the morphology of the substrate, pH, ionic strength, and keratin properties affected the adsorption. Keratin was fractionated from feathers with a scalable and environmentally friendly deep eutectic solvent process. The keratin fraction used in the adsorption studies consisted of different sized keratin peptides (about 1-4 kDa), which had adopted a random coil conformation as observed by circular dichroism (CD). Measuring keratin adsorption to different lignocellulosic substrates by QCM-D revealed a significant affinity of keratin peptides for lignin, both as smooth films and in the form of nanoparticles but only a weak interaction between cellulose and keratin. Systematic evaluation of the effect of surface, media, and protein properties enabled us to obtain a deeper understanding of the driving force for adsorption. Both the structure and size of the keratin peptides appeared to play an important role in its adsorption. The keratin-lignin combination is an attractive option for advanced material applications. For improved adsorption on cellulose, modifications of either keratin or cellulose would be required.


Assuntos
Celulose , Lignina , Adsorção , Celulose/química , Queratinas , Peptídeos , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
11.
Int J Biol Macromol ; 215: 691-704, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35777518

RESUMO

Producing hydrogels capable of mimicking the biomechanics of soft tissue remains a challenge. We explore the potential of plant-based hydrogels as polysaccharide tragacanth gum and antioxidant lignin nanoparticles in bioactive multicomponent hydrogels for tissue engineering. These natural components are combined with TEMPO-oxidized cellulose nanofibrils, a material with known shear thinning behavior. Hydrogels presented tragacanth gum (TG) concentration-dependent rheological properties suitable for extrusion 3D printing. TG enhanced the swelling capacity up to 645% and the degradation rate up to 1.3%/day for hydrogels containing 75% of TG. Young's moduli of the hydrogels varied from 5.0 to 11.6 kPa and were comparable to soft tissues like skin and muscle. In vitro cell viability assays revealed that the scaffolds were non-toxic and promoted proliferation of hepatocellular carcinoma HepG2 cells. Therefore, the plant-based hydrogels designed in this work have a significant potential for tissue engineering.


Assuntos
Hidrogéis , Tragacanto , Impressão Tridimensional , Reologia , Engenharia Tecidual , Alicerces Teciduais
12.
Comput Methods Programs Biomed ; 224: 106980, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810507

RESUMO

BACKGROUND AND OBJECTIVE: Obtaining bone models that represent certain types of fractures is limited by the need for such fractures to occur in real life and to be processed from medical images. This work aims to propose a method that starts from the design of specific fracture patterns in order to be projected on 3D geometric bone models, being prepared for their subsequent geometric fracturing. METHODS: The process of projecting expert-generated fracture patterns has been approached in such a way that they contain geometrical and topological information for the subsequent fracture of the triangle mesh representing the bone model, giving information about the validity of the fracture pattern due to the design process, the validation performed, and the relationships between the fracture lines. RESULTS: Different 3D models of long bones have been used (femur, humerus, ulna and fibula). Also, different types of fracture patterns have been created. These patterns have been used to obtain their projection on three-dimensional bones. In this study, an expert validation of the fracture patterns projected on the bone models is performed. A forensic validation of the fracture patterns used as starting point for the projection is also performed for cases in which this fracture is produced by impact, for which there is scientific evidence based on forensic analysis. This validation also supports the experts, giving them the necessary feedback to complete or modify their fracture patterns according to criteria analyzed from a forensic point of view. CONCLUSIONS: The patterns fit the bone models correctly, despite the irregularities of the bone models, and correspond to the expected projection. In addition, it provides us with a clear line of work, by using the topological information of the fracture pattern and the bone model, which allows us to establish a consistent basis for future guided fractures.


Assuntos
Fraturas Ósseas , Osso e Ossos , Fêmur , Fraturas Ósseas/diagnóstico por imagem , Humanos
13.
Sensors (Basel) ; 22(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271216

RESUMO

The laser ranging interferometer onboard the Gravity Recovery and Climate Experiment Follow-On mission proved the feasibility of an interferometric sensor for inter-satellite length tracking with sub-nanometer precision, establishing an important milestone for space laser interferometry and the general expectation that future gravity missions will employ heterodyne laser interferometry for satellite-to-satellite ranging. In this paper, we present the design of an on-axis optical bench for next-generation laser ranging which enhances the received optical power and the transmit beam divergence, enabling longer interferometer arms and relaxing the optical power requirement of the laser assembly. All design functionalities and requirements are verified by means of computer simulations. A thermal analysis is carried out to investigate the robustness of the proposed optical bench to the temperature fluctuations found in orbit.

14.
ACS Omega ; 7(1): 1329-1336, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036794

RESUMO

Bingel cyclopropanation between Buckminster fullerene and a heteroarmed malonate was utilized to produce a hexakis-functionalized C60 core, with azide and tetrazine units. This orthogonally bifunctional C60 scaffold can be selectively one-pot functionalized by two pericyclic click reactions, that is, inverse electron-demand Diels-Alder and azide-alkyne cycloaddition, which with appropriate ligands (monosaccharides, a peptide and oligonucleotides tested) allows one to control the assembly of heteroantennary bioconjugates.

15.
J Phys Chem B ; 125(44): 12315-12328, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723534

RESUMO

Spherical lignin nanoparticles (LNPs) fabricated via nanoprecipitation of dissolved lignin are among the most attractive biomass-derived nanomaterials. Despite various studies exploring the methods to improve the uniformity of LNPs or seeking more application opportunities for LNPs, little attention has been given to the fundamental aspects of the solvent effects on the intrinsic properties of LNPs. In this study, we employed a variety of experimental techniques and molecular dynamics (MD) simulations to investigate the solvent effects on the intrinsic properties of LNPs. The LNPs were prepared from softwood Kraft lignin (SKL) using the binary solvents of aqueous acetone or aqueous tetrahydrofuran (THF) via nanoprecipitation. The internal morphology, porosity, and mechanical properties of the LNPs were analyzed with electron tomography (ET), small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), and intermodulation AFM (ImAFM). We found that aqueous acetone resulted in smaller LNPs with higher uniformity compared to aqueous THF, mainly ascribing to stronger solvent-lignin interactions as suggested by MD simulation results and confirmed with aqueous 1,4-dioxane (DXN) and aqueous dimethyl sulfoxide (DMSO). More importantly, we report that both LNPs were compact particles with relatively homogeneous density distribution and very low porosity in the internal structure. The stiffness of the particles was independent of the size, and the Young's modulus was in the range of 0.3-4 GPa. Overall, the fundamental understandings of LNPs gained in this study are essential for the design of LNPs with optimal performance in applications.


Assuntos
Lignina , Nanopartículas , Espalhamento a Baixo Ângulo , Solventes , Difração de Raios X
16.
Med Image Anal ; 72: 102120, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146949

RESUMO

Planning of a fracture reduction is important in order to reduce the surgery time, with the consequent improvement of the recovery process. There are no fully automatic methods that solve an adequate fracture reduction without the intervention of a specialist. Usually there are parameters that must be supervised or adjusted by the specialist, in order to obtain a satisfactory reduction. Furthermore, most of the studies in the literature focus on a certain type of bone and area on it. This paper presents an approach that tries to reduce to some extent the intervention of the specialist, so that it can be closer to an automatic approach. The proposed method can be applied to a wide variety of bones and areas, based on the identification of the complete fracture zone and the use of an ICP algorithm modified to work with the distance between fragments. The cases in which it has been tested are clinical cases of real fractures obtained from CT scan. This method allows working with a wide range of fractures, as well as complex fractures or deformed fragments. Unfortunately, all possible cases and situations could not be obtained and proved, but the method can be successfully applied to cases that meet a set of characteristics. The proposed technique has been validated by experts, both visually and empirically, using a framework based on virtual reality (VR). This VR framework has allowed comparing the reduction performed by the method with a reduction made virtually by specialists. This technique has also been compared with other existing techniques, obtaining a significant improvement over these.


Assuntos
Fixação Interna de Fraturas , Fraturas Ósseas , Algoritmos , Fixação de Fratura , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Humanos , Tomografia Computadorizada por Raios X
17.
iScience ; 24(5): 102413, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34007958

RESUMO

At invasion, transformed mammary epithelial cells expand into the stroma through a disrupted myoepithelial (ME) cell layer and basement membrane (BM). The intact ME cell layer has thus been suggested to act as a barrier against invasion. Here, we investigate the mechanisms behind the disruption of ME cell layer. We show that the expression of basal/ME proteins CK5, CK14, and α-SMA altered along increasing grade of malignancy, and their loss affected the maintenance of organotypic 3D mammary architecture. Furthermore, our data suggests that loss of CK5 prior to invasive stage causes decreased levels of Zinc finger protein SNAI2 (SLUG), a key regulator of the mammary epithelial cell lineage determination. Consequently, a differentiation bias toward luminal epithelial cell type was detected with loss of mature, α-SMA-expressing ME cells and reduced deposition of basement membrane protein laminin-5. Therefore, our data discloses the central role of CK5 in mammary epithelial differentiation and maintenance of normal ME layer.

18.
ACS Sustain Chem Eng ; 9(14): 4957-4966, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33868834

RESUMO

MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support for molybdenum oxide for the reverse water-gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.

19.
J Exp Bot ; 72(15): 5522-5533, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909906

RESUMO

Whole-genome duplication and post-polyploidization genome downsizing play key roles in the evolution of land plants; however, the impact of genomic diploidization on functional traits still remains poorly understood. Using Dianthus broteri as a model, we compared the ecophysiological behaviour of colchicine-induced neotetraploids (4xNeo) to diploids (2x) and naturally occurring tetraploids (4xNat). Leaf gas-exchange and chlorophyll fluorescence analyses were performed in order to asses to what extent post-polyploidization evolutionary processes have affected 4xNat. Genomic diploidization and phenotypic novelty were evident. Distinct patterns of variation revealed that post-polyploidization processes altered the phenotypic shifts directly mediated by genome doubling. The photosynthetic phenotype was affected in several ways but the main effect was phenotypic diploidization (i.e. 2x and 4xNat were closer to each other than to 4xNeo). Overall, our results show the potential benefits of considering experimentally synthetized versus naturally established polyploids when exploring the role of polyploidization in promoting functional divergence.


Assuntos
Dianthus , Dianthus/genética , Diploide , Genoma de Planta/genética , Fenótipo , Poliploidia
20.
Energy Fuels ; 35(21): 17212-17224, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35663907

RESUMO

The CO2 methanation performance of Mg- and/or Ce-promoted Ni catalysts supported on cellulose-derived carbon (CDC) was investigated. The samples, prepared by biomorphic mineralization techniques, exhibit pore distributions correlated to the particle sizes, revealing a direct effect of the metal content in the textural properties of the samples. The catalytic performance, evaluated as CO2 conversion and CH4 selectivity, reveals that Ce is a better promoter than Mg, reaching higher conversion values in all of the studied temperature range (150-500 °C). In the interval of 350-400 °C, Ni-Mg-Ce/CDC attains the maximum yield to methane, 80%, reaching near 100% CH4 selectivity. Ce-promoted catalysts were highly active at low temperatures (175 °C), achieving 54% CO2 conversion with near 100% CH4 selectivity. Furthermore, the large potential stability of the Ni-Mg-Ce/CDC catalyst during consecutive cycles of reaction opens a promising route for the optimization of the Sabatier process using this type of catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA