Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1134503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593151

RESUMO

Background: Acute myocardial infarction (AMI) is the major cause of cardiovascular mortality worldwide. Most ischemic episodes are triggered by an increase in heart rate, which induces an imbalance between myocardial oxygen delivery and consumption. Developing drugs that selectively reduce heart rate by inhibiting ion channels involved in heart rate control could provide more clinical benefits. The Cav1.3-mediated L-type Ca2+ current (ICav1.3) play important roles in the generation of heart rate. Therefore, they can constitute relevant targets for selective control of heart rate and cardioprotection during AMI. Objective: We aimed to investigate the relationship between heart rate and infarct size using mouse strains knockout for Cav1.3 (Cav1.3-/-) L-type calcium channel and of the cardiac G protein gated potassium channel (Girk4-/-) in association with the funny (f)-channel inhibitor ivabradine. Methods: Wild-type (WT), Cav1.3+/-, Cav1.3-/- and Girk4-/- mice were used as models of respectively normal heart rate, moderate heart rate reduction, bradycardia, and mild tachycardia, respectively. Mice underwent a surgical protocol of myocardial IR (40 min ischemia and 60 min reperfusion). Heart rate was recorded by one-lead surface ECG recording, and infarct size measured by triphenyl tetrazolium chloride staining. In addition, Cav1.3-/- and WT hearts perfused on a Langendorff system were subjected to the same ischemia-reperfusion protocol ex vivo, without or with atrial pacing, and the coronary flow was recorded. Results: Cav1.3-/- mice presented reduced infarct size (-29%), while Girk4-/- displayed increased infarct size (+30%) compared to WT mice. Consistently, heart rate reduction in Cav1.3+/- or by the f-channel blocker ivabradine was associated with significant decrease in infarct size (-27% and -32%, respectively) in comparison to WT mice. Conclusion: Our results show that decreasing heart rate allows to protect the myocardium against IR injury in vivo and reveal a close relationship between basal heart rate and IR injury. In addition, this study suggests that targeting Cav1.3 channels could constitute a relevant target for reducing infarct size, since maximal heart rate dependent cardioprotective effect is already observed in Cav1.3+/- mice.

2.
Sensors (Basel) ; 21(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577524

RESUMO

Inertial sensors are increasingly used in rodent research, in particular for estimating head orientation relative to gravity, or head tilt. Despite this growing interest, the accuracy of tilt estimates computed from rodent head inertial data has never been assessed. Using readily available inertial measurement units mounted onto the head of freely moving rats, we benchmarked a set of tilt estimation methods against concurrent 3D optical motion capture. We show that, while low-pass filtered head acceleration signals only provided reliable tilt estimates in static conditions, sensor calibration combined with an appropriate choice of orientation filter and parameters could yield average tilt estimation errors below 1.5∘ during movement. We then illustrate an application of inertial head tilt measurements in a preclinical rat model of unilateral vestibular lesion and propose a set of metrics describing the severity of associated postural and motor symptoms and the time course of recovery. We conclude that headborne inertial sensors are an attractive tool for quantitative rodent behavioral analysis in general and for the study of vestibulo-postural functions in particular.


Assuntos
Roedores , Vestíbulo do Labirinto , Aceleração , Animais , Gravitação , Movimento , Ratos
3.
Br J Pharmacol ; 177(3): 623-633, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31347148

RESUMO

BACKGROUND AND PURPOSE: Histamine H4 receptors are expressed in the peripheral vestibular system, and their selective inhibition improves vertigo symptoms in rats with unilateral vestibular lesions. The effects of SENS-111, a selective oral H4 receptor antagonist with high affinity to both animal and human receptors, on vertigo symptoms was evaluated in a translational in vivo model of unilateral vestibular loss. EXPERIMENTAL APPROACH: Pharmacokinetics of SENS-111 in rats was determined to aid dose selection for efficacy testing. Vestibular lesions were induced in rats by unilateral transtympanic injection of kainic acid. The effect of SENS-111 (10 or 20 mg·kg-1 ) on spontaneous nystagmus was evaluated compared with placebo vehicle using video-nystagmography, and the effective dose was compared with those of similar drugs used clinically, as single agents or combined with SENS-111. KEY RESULTS: Doses were selected for plasma exposure were consistent with published phase 1 results from healthy volunteers. SENS-111 of 10 mg·kg-1 gave a 21-22% reduction in nystagmus at 1 hr post-administration, whereas a loss of efficacy was seen with 20 mg·kg-1 . Compared with SENS-111, meclizine and methylprednisolone had minimal effects on nystagmus as single agents, and meclizine abolished the effect of SENS-111 when combined with SENS-111. All evaluated drugs were well tolerated. CONCLUSIONS AND IMPLICATIONS: The exposure-efficacy relationship for improved spontaneous nystagmus seen with SENS-111 in this in vivo model is consistent with phase 1 clinical results and provides preclinical support for pharmacokinetic/pharmacodynamic modelling and selection of effective clinical drug concentrations. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.


Assuntos
Azetidinas , Histamina , Animais , Antagonistas dos Receptores Histamínicos/farmacologia , Pirimidinas , Ratos
4.
Cardiovasc Res ; 113(6): 644-655, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453728

RESUMO

AIMS: In a previous study using a genome-wide microarray strategy, we identified metabotropic glutamate receptor 1 (mGluR1) as a putative cardioprotective candidate in ischaemic postconditioning (PostC). In the present study, we investigated the role of cardiac mGluR1 receptors during cardioprotection against myocardial ischaemia-reperfusion injury in the mouse myocardium. METHODS AND RESULTS: mGluR1 activation by glutamate administered 5 min before reperfusion in C57Bl/6 mice subjected to a myocardial ischaemia protocol strongly decreased both infarct size and DNA fragmentation measured at 24 h reperfusion. This cardioprotective effect was mimicked by the mGluR1 agonist, DHPG (10 µM), and abolished when glutamate was coinjected with the mGluR1 antagonist YM298198 (100 nM). Wortmannin (100 nM), an inhibitor of PI3-kinase, was able to prevent glutamate-induced cardioprotection. A glutamate bolus at the onset of reperfusion failed to protect the heart of mGluR1 knockout mice subjected to a myocardial ischaemia-reperfusion protocol, although PostC still protected the mGluR1 KO mice. Glutamate-treatment improved post-infarction functional recovery as evidenced by an echocardiographic study performed 15 days after treatment and by a histological evaluation of fibrosis 21 days post-treatment. Interestingly, restoration of functional mGluR1s by a PostC stimulus was evidenced at the transcriptional level. Since mGluR1s were localized at the surface membrane of cardiomyocytes, they might contribute to the cardioprotective effect of ischaemic PostC as other Gq-coupled receptors. CONCLUSION: This study provides the first demonstration that mGluR1 activation at the onset of reperfusion induces cardioprotection and might represent a putative strategy to prevent ischaemia-reperfusion injury.


Assuntos
Agonistas de Aminoácidos Excitatórios/administração & dosagem , Glutamina/administração & dosagem , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Animais , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Predisposição Genética para Doença , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
5.
Diabetologia ; 57(1): 177-86, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186360

RESUMO

AIMS/HYPOTHESIS: Insulin-mediated glucose transport and utilisation are decreased in skeletal muscle from type 2 diabetic and glucose-intolerant individuals because of alterations in insulin receptor signalling, GLUT4 translocation to the plasma membrane and microvascular blood flow. Catalytic activity of the muscle-specific isoform of neuronal nitric oxide synthase (nNOS) also participates in the regulation of glucose transport and appears to be decreased in a relevant animal model of drastic insulin resistance, the obese Zucker fa/fa rat. Our objective was to determine the molecular mechanisms involved in this defect. METHODS: Isolated rat muscles and primary cultures of myocytes were used for western blot analysis of protein expression, immunohistochemistry, glucose uptake measurements and GLUT4 translocation assays. RESULTS: nNOS expression was reduced in skeletal muscle from fa/fa rats. This was caused by increased ubiquitination of the enzyme and subsequent degradation by the ubiquitin proteasome pathway. The degradation occurred through a greater interaction of nNOS with the chaperone heat-shock protein 70 and the co-chaperone, carboxyl terminus of Hsc70-interacting protein (CHIP). In addition, an alteration in nNOS sarcolemmal localisation was observed. We confirmed the implication of nNOS breakdown in defective insulin-induced glucose transport by demonstrating that blockade of proteasomal degradation or overexpression of nNOS improved basal and/or insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of insulin-resistant myocytes. CONCLUSIONS/INTERPRETATION: Recovery of nNOS in insulin-resistant muscles should be considered a potential new approach to address insulin resistance.


Assuntos
Glucose/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Western Blotting , Células Cultivadas , Transportador de Glucose Tipo 4/metabolismo , Imunoprecipitação , Masculino , Células Musculares/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Ratos , Ratos Zucker , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA