Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 34(7): 3323-3332, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35444364

RESUMO

In this work, "breathing-caloric" effect is introduced as a new term to define very large thermal changes that arise from the combination of structural changes and gas adsorption processes occurring during breathing transitions. In regard to cooling and heating applications, this innovative caloric effect appears under very low working pressures and in a wide operating temperature range. This phenomenon, whose origin is analyzed in depth, is observed and reported here for the first time in the porous hybrid organic-inorganic MIL-53(Al) material. This MOF compound exhibits colossal thermal changes of ΔS ∼ 311 J K-1 kg-1 and ΔH ∼ 93 kJ kg-1 at room temperature (298 K) and under only 16 bar, pressure which is similar to that of common gas refrigerants at the same operating temperature (for instance, p(CO2) ∼ 64 bar and p(R134a) ∼ 6 bar) and noticeably lower than p > 1000 bar of most solid barocaloric materials. Furthermore, MIL-53(Al) can operate in a very wide temperature range from 333 K down to 254 K, matching the operating requirements of most HVAC systems. Therefore, these findings offer new eco-friendly alternatives to the current refrigeration systems that can be easily adapted to existing technologies and open the door to the innovation of future cooling systems yet to be developed.

2.
Materials (Basel) ; 14(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34683539

RESUMO

In this work, we design, build, and test one of the very first barocaloric devices. The here presented device can recover the energy generated by an individual's footstep and transform it into barocaloric heating and/or cooling. Accordingly, we present an innovative device that can provide eco-friendly and gas-free heating/cooling. Moreover, we test the device by measuring a new barocaloric organic polymer that exhibits a large adiabatic temperature change of ~2.9 K under the application of 380 bar. These results pave the way towards novel and more advanced barocaloric technologies and provide a simple and low-cost device to explore new barocaloric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA