Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 14(1): 180, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233668

RESUMO

BACKGROUND: Breast cancer (BC) is the most invasive cancer with different subtypes that its metabolism is unique compared with normal cells. Glutamine is considered critical nutrition that many cancer cells, particularly BC cells, are dependent on it for growth and proliferation. Therefore, targeting glutamine metabolism, especially enzymes that are related to this pathway, can be beneficial to design anti-cancer agents. Recent evidence has shown that microRNAs (miRNAs), with a short length and single-strand properties, play a prominent role in regulating the genes related to glutamine metabolism, which may control the development of cancer. METHODS: In silico analysis confirmed that miR-513c and miR-3163 might be involved in glutamine metabolism. The expression level of these two miRNAs was evaluated in eighty BC tissues and normal adjacent tissues. Furthermore, GSE38167, GSE38867, GSE42128, GSE45666, and GSE53179 were employed from gene expression omnibus (GEO). The Limma package was utilized to identify differentially expressed miRNAs (DEMs) of mentioned datasets to evaluate miR-513c and miR-3163 expression. Further, in silico analysis was utilized to predict the potential biological processes and molecular pathways of miR-513c and miR-3163, based on their target genes. RESULTS: In silico studies revealed top categories of biological processes and cellular pathways that might play a critical role in metabolism reprogramming and cancer development and were target genes for miR-513c and miR-3163. The current study showed that miR-513c (p value = 0.02062 and FC = - 2.3801) and miR-3163 (p value = 0.02034 and FC = - 2.3792) were downregulated in tumor tissues compared to normal adjacent tissues. The analysis of GEO microarray datasets showed that miR-513c was downregulated in GSE38167, GSE38867, GSE42128, GSE45666 and GSE53179, whereas there was a significant downregulation of miR-3163 in only two studies, including GSE38867 and GSE42128 that they were in accordance with our experimental results. Furthermore, the subgroup analysis did not show any substantial relationship between expression levels of these two miRNAs and factors such as age, family history of cancer, and abortion history. CONCLUSION: MiR-513c and miR-3163 were downregulated in BC tissues, which might serve as tumor suppressors. They are suggested as potential therapeutic targets for patients with BC.


Assuntos
Neoplasias da Mama
2.
Mutat Res Rev Mutat Res ; 787: 108366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34083056

RESUMO

Breast cancer (BC) is a heterogeneous cancer with multiple subtypes affecting women worldwide. Triple-negative breast cancer (TNBC) is a prominent subtype of BC with poor prognosis and an aggressive phenotype. Recent understanding of metabolic reprogramming supports its role in the growth of cancer cells and their adaptation to their microenvironment. The Warburg effect is characterized by the shift from oxidative to reductive metabolism and external secretion of lactate. The Warburg effect prevents the use of the required pyruvate in the tricarboxylic acid (TCA) cycle progressing through pyruvate dehydrogenase inactivation. Therefore, it is a major regulatory mechanism to promote glycolysis and disrupt the TCA cycle. Glutamine (Gln) can supply the complementary energy for cancer cells. Additionally, it is the main substrate to support bioenergetics and biosynthetic activities in cancer cells and plays a vital role in a wide array of other processes such as ferroptosis. Thus, the switching of glucose to Gln in the TCA cycle toward reductive Gln metabolism is carried out by hypoxia-inducible factors (HIFs) conducted through the Warburg effect. The literature suggests that the addiction of TNBC to Gln could facilitate the proliferation and invasiveness of these cancers. Thus, Gln metabolism inhibitors, such as CB-839, could be applied to manage the carcinogenic properties of TNBC. Such inhibitors, along with conventional chemotherapy agents, can potentially improve the efficiency and efficacy of TNBC treatment. In this review, we discuss the associations between glucose and Gln metabolism and control of cancer cell growth from the perspective that Gln metabolism inhibitors could improve the current chemotherapy drug effects.


Assuntos
Glutamina/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Apoptose/fisiologia , Ferroptose/fisiologia , Humanos , Efeito Warburg em Oncologia
3.
BMC Res Notes ; 14(1): 234, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134782

RESUMO

OBJECTIVE: Breast cancer (BC) is the most significant and lethal type of cancer in women. Although there are many newly develop chemotherapy drugs for patients with BC treating at various stages, drug resistance is the most important obstacle in their effectiveness for BC treatment. On the other hand, microRNAs are considered key regulators of genes involved in carcinogenesis and chemoresistance in cancers. The purpose of this study was to evaluate the role of miR-152-3p and miR-185 in intrinsic chemoresistance and proliferation of BC. In addition, the potential role of these miRNAs during chemoresistance was evaluated through possible signaling pathways. RESULTS: Here, miR-152-3p was significantly downregulated in tumor tissues compared to the corresponding margin tissues in patients with BC (p-value ≥ 0.04407 and fold change = - 2.0552). In contrast, no statistically significant difference was observed in the miR-185 expression between the two groups. Furthermore, no significant correlation was found between the expression of these two miRNAs and subfactors, including cancer family history, abortion, and age. Downregulation of miR-152-3p could be considered a promising regulator of BC chemoresistance.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Transdução de Sinais
4.
Anticancer Agents Med Chem ; 21(7): 927-935, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32972352

RESUMO

BACKGROUND: Breast Cancer (BC) is the most common malignancy among women with a high mortality rate. The blockade of asparagine-related pathways may be an effective measure to control the progression and reduction of BC metastasis potential. Recently, it has been shown that various miRNAs, as part of small non-coding RNAs, have a great role in cancer development, especially asparagine-related pathways, to modulate the invasiveness. OBJECTIVE: This study aimed to evaluate the expression of miR-130a-5p and miR-615-3p in tumoral and nontumoral adjacent tissues of patients with BC. METHODS: There is a chance that asparagine metabolism is influenced by miR-130a-5p and miR-615-3p as confirmed by bioinformatics analysis. Hence, real-time PCR was conducted on eighty BC tumoral and non-tumoral adjacent tissues to evaluate the expression level of the two miRNAs. To predict the potential biological process and molecular pathways of miR-130a-5p, an in silico analysis was performed. RESULTS: This study indicated that miR-130a was downregulated in tumoral tissues compared to non-tumoral adjacent tissues (P-value= 0.01443 and fold change= -2.5137), while miR-615-3p did not show a significant difference between the two groups. Furthermore, the subgroup studies did not reveal any significant correlation between the expression of these two miRNAs and subfactors. Furthermore, in silico studies unraveled several biological processes related to amino-acid metabolism, as well as pathways related to tumor development such as Phosphatase and Tensin Homolog (PTEN) and JAK-STAT pathways among miR-130a-5p target genes. CONCLUSION: Our findings indicate that miRNA-130a-5p is downregulated in BC tissues and may play a tumor suppressor role in patients with BC. Therefore, it may be suggested as a potential diagnostic and therapeutic target for BC.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Neoplasias da Mama/metabolismo , Feminino , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade
5.
Anticancer Agents Med Chem ; 21(2): 254-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32914721

RESUMO

Metabolic reprogramming is a significant property of various cancer cells, which most commonly arises from the Tumor Microenvironment (TME). The events of metabolic pathways include the Warburg effect, shifting in Krebs cycle metabolites, and the rate of oxidative phosphorylation, potentially providing energy and structural requirements for the development and invasiveness of cancer cells. TME and tumor metabolism shifting have a close relationship through bidirectional signaling pathways between stromal and tumor cells. Cancer- Associated Fibroblasts (CAFs), as the most dominant cells of TME, play a crucial role in the aberrant metabolism of cancer. Furthermore, the stated relationship can affect survival, progression, and metastasis in cancer development. Recently, exosomes are considered one of the most prominent factors in cellular communications considering effective content and bidirectional mediatory effect between tumor and stromal cells. In this regard, CAF-Derived Exosomes (CDE) exhibit an efficient obligation to induce metabolic reprogramming for promoting growth and metastasis of cancer cells. The understanding of cancer metabolism, including factors related to TME, could lead to the discovery of a potential biomarker for diagnostic and therapeutic approaches in cancer management. This review focuses on the association between metabolic reprogramming and engaged microenvironmental, factors such as CAFs, and the associated derived exosomes.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Exossomos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Fibroblastos Associados a Câncer/patologia , Exossomos/patologia , Humanos , Neoplasias/patologia , Hipóxia Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA