Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 111(8): 1571-1580, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014107

RESUMO

Osteosarcoma is the most frequently primary malignant bone tumor characterized by infiltrative growth responsible for relapses and metastases. Treatment options are limited, and a new therapeutic option is required. Boron neutron capture therapy (BNCT) is an experimental alternative radiotherapy able to kill infiltrative tumor cells spearing surrounding healthy tissues. BNCT studies are performed on 2D in vitro models that are not able to reproduce pathological tumor tissue organization or on in vivo animal models that are expensive, time-consuming and must follow the 3R's principles. A 3D in vitro model is a solution to better recapitulate the complexity of solid tumors meanwhile limiting the animal's use. Objective of this study is to optimize the technical assessment for developing a 3D in vitro osteosarcoma model as a platform for BNCT studies: printing protocol, biomaterial selection, cell density, and crosslinking process. The best parameters that allow a fully colonized 3D bioprinted construct by rat osteosarcoma cell line UMR-106 are 6 × 106 cells/ml of hydrogel and 1% CaCl2 as a crosslinking agent. The proposed model could be an alternative or a parallel approach to 2D in vitro culture and in vivo animal models for BNCT experimental study.


Assuntos
Neoplasias Ósseas , Terapia por Captura de Nêutron de Boro , Osteossarcoma , Ratos , Animais , Compostos de Boro , Terapia por Captura de Nêutron de Boro/métodos , Osteossarcoma/radioterapia , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/tratamento farmacológico
2.
Gels ; 9(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826299

RESUMO

Three-dimensional (3D) bioprinting allows the production of artificial 3D cellular microenvironments thanks to the controlled spatial deposition of bioinks. Proper bioink characterization is required to achieve the essential characteristics of printability and biocompatibility for 3D bioprinting. In this work, a protocol to standardize the experimental characterization of a new bioink is proposed. A functionalized hydrogel based on gelatin and chitosan was used. The protocol was divided into three steps: pre-printing, 3D bioprinting, and post-printing. For the pre-printing step, the hydrogel formulation and its repeatability were evaluated. For the 3D-bioprinting step, the hydrogel-printability performance was assessed through qualitative and quantitative tests. Finally, for the post-printing step, the hydrogel biocompatibility was investigated using UMR-106 cells. The hydrogel was suitable for printing grids with good resolution from 4 h after the cross-linker addition. To guarantee a constant printing pressure, it was necessary to set the extruder to 37 °C. Furthermore, the hydrogel was shown to be a valid biomaterial for the UMR-106 cells' growth. However, fragmentation of the constructs appeared after 14 days, probably due to the negative osteosarcoma-cell interference. The protocol that we describe here denotes a strong approach to bioink characterization to improve standardization for future biomaterial screening and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA