Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 16(6): 979-987, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429344

RESUMO

Electrolysers offer an appealing technology for conversion of CO2 into high-value chemicals. However, there are few tools available to track the reactions that occur within electrolysers. Here we report an electrolysis optical coherence tomography platform to visualize the chemical reactions occurring in a CO2 electrolyser. This platform was designed to capture three-dimensional images and videos at high spatial and temporal resolutions. We recorded 12 h of footage of an electrolyser containing a porous electrode separated by a membrane, converting a continuous feed of liquid KHCO3 to reduce CO2 into CO at applied current densities of 50-800 mA cm-2. This platform visualized reactants, intermediates and products, and captured the strikingly dynamic movement of the cathode and membrane components during electrolysis. It also linked CO production to regions of the electrolyser in which CO2 was in direct contact with both membrane and catalyst layers. These results highlight how this platform can be used to track reactions in continuous flow electrochemical reactors.

2.
Nat Commun ; 15(1): 766, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278793

RESUMO

Industrial hydrogen peroxide (H2O2) is synthesized using carbon-intensive H2 gas production and purification, anthraquinone hydrogenation, and anthrahydroquinone oxidation. Electrochemical hydrogenation (ECH) of anthraquinones offers a carbon-neutral alternative for generating H2O2 using renewable electricity and water instead of H2 gas. However, the H2O2 formation rates associated with ECH are too low for commercialization. We report here that a membrane reactor enabled us to electrochemically hydrogenate anthraquinone (0.25 molar) with a current efficiency of 70% at current densities of 100 milliamperes per square centimeter. We also demonstrate continuous H2O2 synthesis from the hydrogenated anthraquinones over the course of 48 h. This study presents a fast rate of electrochemically-driven anthraquinone hydrogenation (1.32 ± 0.14 millimoles per hour normalized per centimeter squared of geometric surface of electrode), and provides a pathway toward carbon-neutral H2O2 synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA