Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(18): 12533-12555, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38689800

RESUMO

This study investigates the corrosion inhibition potential of 3,4-dimethoxy phenyl thiosemicarbazone (DMPTS) for copper in 1 M hydrochloric acid (HCl) solutions, aiming to disclose the mechanism behind its protective action. Through an integrative methodology encompassing electrochemical analyses-such as weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS)-we quantitatively evaluate the corrosion protection efficacy of DMPTS. It was determined that the optimal concentration of DMPTS markedly boosts the corrosion resistance of copper, achieving an impressive inhibition efficiency of up to 89% at 400 ppm. The formation of a protective layer on the copper surface, a critical aspect of DMPTS's inhibitory action, was characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). These techniques provided empirical evidence of surface morphology modifications and roughness changes, affirming the formation of a protective barrier against corrosion. A significant advancement in our study was the application of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, which identified chemical adsorption as the definitive mechanism of corrosion inhibition by DMPTS. The ATR-FTIR results explicitly demonstrated the specific interactions between DMPTS molecules and the copper surface, indicative of a robust protective adsorbed layer formation. This mechanistic insight, crucial to understanding the inhibitory process, aligns with the protective efficacy observed in electrochemical and surface analyses. Theoretical support, provided by the Quantum Theory of Atoms in Molecules (QTAIM) and quantum chemical computations, further validated the strong molecular interaction between DMPTS and copper, corroborating the experimental findings. Collectively, this research not only confirms the superior corrosion inhibition performance of DMPTS in an acidic setting but also elucidates the chemical adsorption mechanism as the foundation of its action, offering valuable insights for the development of effective corrosion inhibitors in industrial applications.

2.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256105

RESUMO

This study investigates the efficacy of adsorbents from locally sourced olive waste-encompassing olive skins, leaves, and pits, recovered from the initial centrifugation of olives (OWP)-and a composite with sodium alginate (OWPSA) for the removal of Cu2+ ions from synthetic wastewater. Experimental analyses conducted at room temperature, with an initial Cu2+ concentration of 50 mg/L and a solid/liquid ratio of 1 g/L, showed that the removal efficiencies were approximately 79.54% and 94.54% for OWP and OWPSA, respectively, highlighting the positive impact of alginate on adsorption capacity. Utilizing statistical physics isotherm models, particularly the single-layer model coupled to real gas (SLMRG), allowed us to robustly fit the experimental data, providing insights into the adsorption mechanisms. Thermodynamic parameters affirmed the spontaneity and endothermic nature of the processes. Adsorption kinetics were interpreted effectively using the pseudo-second-order (PSO) model. Molecular modeling investigations, including the conductor-like screening model for real solvents (COSMO-RS), density functional theory (DFT), and atom-in-molecule (AIM) analysis, unveiled intricate molecular interactions among the adsorbent components-cellulose, hemicellulose, lignin, and alginate-and the pollutant Cu2+, confirming their physically interactive nature. These findings emphasize the synergistic application of experimental and theoretical approaches, providing a comprehensive understanding of copper adsorption dynamics at the molecular level. This methodology holds promise for unraveling intricate processes across various adsorbent materials in wastewater treatment applications.


Assuntos
Olea , Cobre , Águas Residuárias , Adsorção , Alginatos
3.
ACS Omega ; 8(49): 47224-47238, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107914

RESUMO

Natural and fragrant compounds, essential oils (EOs) extracted from plants through hydrodistillation, are gaining popularity as eco-friendly and sustainable agents to protect metals and alloys from corrosion in acidic environments. This research focused on extracting and characterizing an EO obtained from the Cuminum cyminum (CC) plant native to India. The study aimed to evaluate the inhibitory properties of this EO on mild steel in a 0.5 M HCl solution at different concentrations. Various analytical techniques, including potentiodynamic polarization curves, electrochemical impedance spectroscopy, optical microscopy, infrared spectroscopy, and proton magnetic resonance, were employed to assess the effectiveness of this EO extract. Our findings indicate that the Cuminum cyminum L (CCL) extract effectively reduces the corrosion of mild steel in hydrochloric acid with an inhibition efficiency ranging from 79.69 to 98.76%. The optimal inhibition concentration was 2 g/L of EO, and surface analysis confirmed the formation of a protective layer. Furthermore, our results suggest that the inhibitor binds to the metal surface through a charge-transfer process, creating a protective film. Finally, we utilized theoretical calculations and molecular dynamics simulations to elucidate the inhibition mechanism on both a global and local scale.

4.
Environ Sci Pollut Res Int ; 30(21): 59081-59105, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017845

RESUMO

Over the past century, a substantial amount of research focused on developing corrosion inhibitors, with a special focus on green "plant-based" corrosion inhibitors. Among the various types of inhibitors, polyphenols emerged as a promising candidate due to their advantageous characteristics, which include being inexpensive, biodegradable, renewable, and, most importantly, safe for both the environment and humans. Their performance as sustainable corrosion inhibitors have encouraged many electrochemical experiments as well as theoretical, mechanistic, and computational studies, with many papers reporting inhibition efficiencies of over 85%. In this review, the majority of literature contributions on the inhibition of various types of polyphenols, their natural extraction techniques, and their applications as "greener" corrosion inhibitors for metals are thoroughly described and discussed with a focus on their preparation, inhibition mechanism, and performance. Based on the reviewed literature, it can be concluded that polyphenols have a very promising potential to be used as both green and powerful corrosion inhibitors; therefore, further investigations, experimental or computational, are still required to realize higher inhibition efficiencies reaching up to ≈ 100%.


Assuntos
Metais , Polifenóis , Humanos , Corrosão
5.
J Environ Manage ; 326(Pt A): 116742, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375437

RESUMO

The use of biosorption as a strategy for lowering the amount of pollution caused by heavy metals is particularly encouraging. In this investigation, a low-cost and efficient biosorbent, Inula Viscosa leaves were used to remove zinc ions (Zn2+) from synthetic wastewater. A Fourier transform infrared spectroscopy experiment, a scanning electron microscopy experiment, and an energy dispersive X-ray spectroscopy experiment were used to describe the support. Several different physicochemical factors, such as the beginning pH value, contact duration, initial zinc concentration, biosorbent dose, and temperature, were investigated in this study. When the Langmuir, Freundlich, Temkin, Toth, and Redlich-Peterson models were used to match the data from the Inula Viscosa leaves biosorption isotherms, it was found that the biosorption isotherms correspond most closely with the Langmuir isotherm. On the other hand, the kinetic biosorption process was investigated using pseudo-first-order, pseudo-second-order (PS2), and Elovich models. The PS2 model was the one that provided the most accurate description of the biosorption kinetics. The thermodynamics process shows the spontaneous and endothermic character of Zn2+ sorption on Inula Viscosa leaves, which also entails the participation of physical interactions. In addition, the atom-in-molecule analysis, density functional theory, and the conductor like screening model for real solvents, were used to investigate the relationship that exists between quantum calculations and experimental outcomes.


Assuntos
Inula , Poluentes Químicos da Água , Zinco/química , Águas Residuárias/análise , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Polymers (Basel) ; 14(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015543

RESUMO

Using stationary electrochemical, polarization resistance, cathodic charging, transient electrochemical impedance spectroscopy, and theoretical and molecular mechanics studies, epoxy polymer-coated carbon steel specimens' ability to protect metals from corrosion in various soil extracts was examined. According to the polarization resistance tests results, the polymer coating remained stable for 60 days in all three soil extracts, with a 90% efficiency for the steel coated in Soil Extract A, indicating that the sandy soil is less aggressive than the other two. The aggressiveness of clay soil was confirmed by the fact that a polymer-coated steel rod in the clay soil extract experienced a corrosion current density of 97 µA/cm2. In contrast, the same rod in sandy soil had a current density of 58 µA/cm2. The coating's good adsorption contact with the metal surface was further guaranteed by molecular dynamics simulations, which provided atomic-level evidence of the epoxy molecule's adsorption behavior (geometry) and adsorption energy on the carbon steel surface.

7.
Polymers (Basel) ; 14(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35745972

RESUMO

The adsorption mechanisms of methylene blue (MB) onto olive waste (residue) treated with KOH (OR-KOH) and onto an OR-KOH and PEG-silica gel composite (OR-KOH/PEG-SG) at various temperatures were investigated using a combination of experimental analysis and Monte Carlo ab-initio simulations. The effects of adsorption process variables such as pH, temperature, and starting adsorbate concentration were investigated. The experimental data were fitted to Langmuir and Freundlich models. The maximum adsorption capacities of MB onto OR-KOH and OR-KOH/PEG-SG adsorbents reached values of 504.9 mg/g and 161.44 mg/g, respectively. The experimental FT-IR spectra indicated that electrostatic attraction and hydrogen bond formation were critical for MB adsorption onto the adsorbents generated from olive waste. The energetic analyses performed using Monte Carlo atomistic simulations explained the experimental results of a differential affinity for the investigated adsorbents and confirmed the nature of the interactions between methylene blue and the adsorbents to be van der Waals electrostatic forces.

8.
RSC Adv ; 12(24): 15601-15612, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35685172

RESUMO

Using a plasma-assisted chemical vapor deposition (PACVD) process, carbon steel samples were coated with an organosilicon layer less than 2.5 microns thick. Ellipsometry, Fourier transform infrared (FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to analyze the films. Additionally, gravimetric experiments were used to determine the electrochemical properties of the organosilicon coatings. Organosilicon-coated carbon steel specimens demonstrated significantly enhanced resistance to corrosive conditions, such as 3% aqueous sodium chloride solutions. The surface preparation method has a considerable influence on the morphological and electrochemical properties of the steel. Argon pretreatment significantly enhances the corrosion resistance of organosilicon-coated steel. Gravimetric research demonstrated that pretreatment with argon plasma resulted in less weight loss and corrosion than pretreatment with nitrogen plasma. The link between quantum computing and experimental data using density functional theory (DFT) and molecular dynamics (MD) was used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA