Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Bull ; 244(1): 35-50, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37167620

RESUMO

AbstractIt is well established that metabolic processes change with temperature and size. Yet the underlying physiological mechanisms are less well understood regarding how such processes covary within a species and particularly so for developmental stages. Physiological analysis of larvae of the sea urchin Lytechinus pictus revealed that protein was the major biochemical substrate supporting metabolism. The complex dynamics of protein synthesis, turnover, and accretion changed during growth, showing a sevenfold decrease in the ratio of protein accretion to protein synthesis (protein depositional efficiency). To test hypotheses of physiological variation with rising temperature, larvae were reared over a temperature range experienced by this species in its ambient habitat. The thermal sensitivity of protein synthesis was greater than respiration (thermal sensitivity values of 3.7 and 2.4, respectively). Bioenergetic calculations revealed a disproportionate increase in energy allocation toward protein synthesis with rising temperature. These differential temperature sensitivities result in metabolic trade-offs of energy acquisition and expenditure, thereby altering physiological homeostasis. Such insights are of value for improving predictions about limits of biological resilience in a warming ocean.


Assuntos
Lytechinus , Ouriços-do-Mar , Animais , Lytechinus/fisiologia , Temperatura , Larva , Biossíntese de Proteínas , Proteínas/metabolismo
2.
J Exp Biol ; 225(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305623

RESUMO

Understanding the mechanisms of biological responses to environmental change is a central theme in comparative and evolutionary physiology. Here, we analyzed variation in physiological responses to temperature, using 21 full-sibling larval families of the Pacific oyster, Crassostrea gigas. Pedigrees were confirmed with genetic markers for adult broodstock obtained from our breeding program. From these 21 larval families, 41 determinations of thermal sensitivity (Q10 values) were assayed for larvae of different sizes. For respiration, thermal sensitivity was consistent within a larval family during growth, but showed significant differences among families. Different Q10 values were evident among 21 larval families, with family accounting for 87% of variation. Specifically, four larval families maintained an increased thermal sensitivity for respiration (Q10 of 3). This physiology would confer resilience to rising temperature by matching the increased energy demand of protein synthesis (Q10 of 3 previously reported). For protein synthesis, differences in Q10 values were also observed. Notably, a family was identified that had a decreased thermal sensitivity for protein synthesis (Q10 of 1.7 cf. Q10 of 3 for other families), conferring an optimal energy allocation with rising temperature. Different thermal sensitivities across families for respiration (energy supply) and protein synthesis (energy demand) were integrated into models of energy allocation at the whole-organism level. The outcome of these analyses provides insights into the physiological bases of optimal energy allocation with rising temperature. These transgenerational (egg-to-egg) experiments highlight approaches to dissect components of phenotypic variance to address long-standing questions of genetic adaptation and physiological resilience to environmental change.


Assuntos
Crassostrea , Animais , Crassostrea/metabolismo , Larva , Biossíntese de Proteínas , Temperatura , Respiração
3.
Aquat Toxicol ; 205: 25-35, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30312899

RESUMO

Sturgeon species are imperiled world-wide by a variety of anthropogenic stressors including chemical contaminants. Atlantic sturgeon, Acipenser oxyrinchus, and shortnose sturgeon, Acipenser brevirostrum, are largely sympatric acipenserids whose young life-stages are often exposed to high levels of benthic-borne PCBs and PCDD/Fs in large estuaries along the Atlantic Coast of North America. In previous laboratory studies, we demonstrated that both sturgeon species are sensitive to early life-stage toxicities from exposure to environmentally relevant concentrations of coplanar PCBs and TCDD. The sensitivity of young life-stages of fishes to these contaminants varies among species by three orders of magnitude and often is due to variation in the structure and function of the aryl hydrocarbon receptor (AHR) pathway. Unlike mammals, fishes have two forms of AHR (AHR1 and AHR2) with AHR2 usually being more highly expressed across tissues and functional in mediating toxicities. Based on previous studies in white sturgeon, A. transmontanus, we hypothesized that sturgeon taxa are unusually sensitive to these contaminants because of higher levels of expression and functional activity of AHR1 than in other fish taxa. To address this possibility, we characterized AHR1 in both Atlantic Coast sturgeon species, evaluated its' in vivo expression in young life-stages and in multiple tissues of shortnose sturgeon, and tested its ability to drive reporter gene expression in AHR-deficient cells treated with graded doses of PCB126 and TCDD. Similar to white sturgeon and lake sturgeon, AHR1 amino acid sequences in Atlantic sturgeon and shortnose sturgeon were more similar to mammalian AHRs and avian AHR1s than to AHR1 in other fishes, suggesting their greater functionality in sturgeon species than in other fishes. Exposure to graded doses of coplanar PCBs and TCDD usually failed to significantly induce AHR1 expression in young life-stages or most tissues of shortnose sturgeon. However, in reporter gene assays, AHR1 drove higher levels of gene expression than AHR2 alone, but their binary combination failed to drive higher levels of expression than either AHR alone. In total, our results suggest that AHR1 may be more functional in sturgeon species than in other fishes, but probably does not explain their heightened sensitivity to these contaminants.


Assuntos
Peixes , Regulação da Expressão Gênica/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Peixes/genética , Peixes/metabolismo , Perfilação da Expressão Gênica , América do Norte , Bifenilos Policlorados/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Aquat Toxicol ; 197: 19-31, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427830

RESUMO

Atlantic sturgeon and shortnose sturgeon co-occur in many estuaries along the Atlantic Coast of North America. Both species are protected under the U.S. Endangered Species Act and internationally on the IUCN Red list and by CITES. Early life-stages of both sturgeons may be exposed to persistent aromatic hydrocarbon contaminants such as PCBs and PCDD/Fs which are at high levels in the sediments of impacted spawning rivers. Our objective was to compare the PCBs and TCDD sensitivities of both species with those of other fishes and to determine if environmental concentrations of these contaminants approach those that induce toxicity to their young life-stages under controlled laboratory conditions. Because our previous studies suggested that young life-stages of North American sturgeons are among the more sensitive of fishes to coplanar PCB and TCDD-induced toxicities, we were interested in identifying the molecular bases of this vulnerability. It is known that activation of the aryl hydrocarbon receptor 2 (AHR2) in fishes mediates most toxicities to these contaminants and transcriptional activation of xenobiotic metabolizing enzymes such as cytochrome P4501A (CYP1A). Previous studies demonstrated that structural and functional variations in AHRs are the bases for differing sensitivities of several vertebrate taxa to aromatic hydrocarbons. Therefore, in this study we characterized AHR2 and its expression in both sturgeons as an initial step in understanding the mechanistic bases of their sensitivities to these contaminants. We also used CYP1A expression as an endpoint to develop Toxicity Equivalency Factors (TEFs) for these sturgeons. We found that critical amino acid residues in the ligand binding domain of AHR2 in both sturgeons were identical to those of the aromatic hydrocarbon-sensitive white sturgeon, and differed from the less sensitive lake sturgeon. AHR2 expression was induced by TCDD (up to 6-fold) and by three of four tested coplanar PCB congeners (3-5-fold) in Atlantic sturgeon, but less so in shortnose sturgeon. We found that expression of AHR2 and CYP1A mRNA significantly covaried after exposure to TCDD and PCB77, PCB81, PCB126, but not PCB169 in both sturgeons. We also determined TEFs for the four coplanar PCBs in shortnose sturgeon based on comparison of CYP1A mRNA expression across all doses. Surprisingly, the TEFs for all four coplanar PCBs in shortnose sturgeon were much higher (6.4-162 times) than previously adopted for fishes by the WHO.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Peixes/metabolismo , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Sequência de Aminoácidos , Animais , Arocloros/toxicidade , Citocromo P-450 CYP1A1/genética , Peixes/genética , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica/efeitos dos fármacos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA