Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Heart Assoc ; 13(10): e030467, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38761081

RESUMO

BACKGROUND: Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS: We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS: FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.


Assuntos
Filaminas , Proteostase , Filaminas/genética , Filaminas/metabolismo , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Masculino , Adulto , Mutação , Bortezomib/farmacologia
2.
J Clin Invest ; 134(13)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38768074

RESUMO

Myocarditis is clinically characterized by chest pain, arrhythmias, and heart failure, and treatment is often supportive. Mutations in DSP, a gene encoding the desmosomal protein desmoplakin, have been increasingly implicated in myocarditis. To model DSP-associated myocarditis and assess the role of innate immunity, we generated engineered heart tissues (EHTs) using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with heterozygous DSP truncating variants (DSPtvs) and a gene-edited homozygous deletion cell line (DSP-/-). At baseline, DSP-/- EHTs displayed a transcriptomic signature of innate immune activation, which was mirrored by cytokine release. Importantly, DSP-/- EHTs were hypersensitive to Toll-like receptor (TLR) stimulation, demonstrating more contractile dysfunction compared with isogenic controls. Relative to DSP-/- EHTs, heterozygous DSPtv EHTs had less functional impairment. DSPtv EHTs displayed heightened sensitivity to TLR stimulation, and when subjected to strain, DSPtv EHTs developed functional deficits, indicating reduced contractile reserve compared with healthy controls. Colchicine or NF-κB inhibitors improved strain-induced force deficits in DSPtv EHTs. Genomic correction of DSP p.R1951X using adenine base editing reduced inflammatory biomarker release from EHTs. Thus, EHTs replicate electrical and contractile phenotypes seen in human myocarditis, implicating cytokine release as a key part of the myogenic susceptibility to inflammation. The heightened innate immune activation and sensitivity are targets for clinical intervention.


Assuntos
Imunidade Inata , Células-Tronco Pluripotentes Induzidas , Miocardite , Miócitos Cardíacos , Humanos , Miocardite/genética , Miocardite/imunologia , Miocardite/patologia , Imunidade Inata/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Masculino , Predisposição Genética para Doença , Feminino
3.
J Genet Couns ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682751

RESUMO

The dystrophinopathies encompass the phenotypically variable forms of muscular dystrophy caused by pathogenic variants in the DMD gene. The dystrophinopathies include the most common inherited muscular dystrophy among 46,XY individuals, Duchenne muscular dystrophy, as well as Becker muscular dystrophy and other less common phenotypic variants. With increased access to and utilization of genetic testing in the diagnostic and carrier setting, genetic counselors and clinicians in diverse specialty areas may care for individuals with and carriers of dystrophinopathy. This practice resource was developed as a tool for genetic counselors and other health care professionals to support counseling regarding dystrophinopathies, including diagnosis, health risks and management, psychosocial needs, reproductive options, clinical trials, and treatment. Genetic testing efforts have enabled genotype/phenotype correlation in the dystrophinopathies, but have also revealed unexpected findings, further complicating genetic counseling for this group of conditions. Additionally, the therapeutic landscape for dystrophinopathies has dramatically changed with several FDA-approved therapeutics, an expansive research pathway, and numerous clinical trials. Genotype-phenotype correlations are especially complex and genetic counselors' unique skill sets are useful in exploring and explaining this to families. Given the recent advances in diagnostic testing and therapeutics related to dystrophinopathies, this practice resource is a timely update for genetic counselors and other healthcare professionals involved in the diagnosis and care of individuals with dystrophinopathies.

4.
Genome Med ; 16(1): 13, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229148

RESUMO

BACKGROUND: Sudden unexpected death in children is a tragic event. Understanding the genetics of sudden death in the young (SDY) enables family counseling and cascade screening. The objective of this study was to characterize genetic variation in an SDY cohort using whole genome sequencing. METHODS: The SDY Case Registry is a National Institutes of Health/Centers for Disease Control and Prevention surveillance effort to discern the prevalence, causes, and risk factors for SDY. The SDY Case Registry prospectively collected clinical data and DNA biospecimens from SDY cases < 20 years of age. SDY cases were collected from medical examiner and coroner offices spanning 13 US jurisdictions from 2015 to 2019. The cohort included 211 children (median age 0.33 year; range 0-20 years), determined to have died suddenly and unexpectedly and from whom DNA biospecimens for DNA extractions and next-of-kin consent were ascertained. A control cohort consisted of 211 randomly sampled, sex- and ancestry-matched individuals from the 1000 Genomes Project. Genetic variation was evaluated in epilepsy, cardiomyopathy, and arrhythmia genes in the SDY and control cohorts. American College of Medical Genetics/Genomics guidelines were used to classify variants as pathogenic or likely pathogenic. Additionally, pathogenic and likely pathogenic genetic variation was identified using a Bayesian-based artificial intelligence (AI) tool. RESULTS: The SDY cohort was 43% European, 29% African, 3% Asian, 16% Hispanic, and 9% with mixed ancestries and 39% female. Six percent of the cohort was found to harbor a pathogenic or likely pathogenic genetic variant in an epilepsy, cardiomyopathy, or arrhythmia gene. The genomes of SDY cases, but not controls, were enriched for rare, potentially damaging variants in epilepsy, cardiomyopathy, and arrhythmia-related genes. A greater number of rare epilepsy genetic variants correlated with younger age at death. CONCLUSIONS: While damaging cardiomyopathy and arrhythmia genes are recognized contributors to SDY, we also observed an enrichment in epilepsy-related genes in the SDY cohort and a correlation between rare epilepsy variation and younger age at death. These findings emphasize the importance of considering epilepsy genes when evaluating SDY.


Assuntos
Cardiomiopatias , Epilepsia , Criança , Humanos , Feminino , Lactente , Masculino , Morte Súbita Cardíaca/etiologia , Inteligência Artificial , Teorema de Bayes , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Cardiomiopatias/genética , Cardiomiopatias/complicações , Epilepsia/genética , DNA , Testes Genéticos
5.
J Genet Couns ; 33(1): 216-221, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849384

RESUMO

While many genetic professionals are involved in the education of lay and professional audiences, most do not have formal training in education theory and program design. Partnerships with adult education experts can provide additional resources and improve the level of instruction, thereby increasing the impact of an educational intervention. This report discusses the experience of a multidisciplinary team of educators, clinicians, and researchers partnering to develop evidence-based education for cardiology practitioners. It includes practical advice for how clinicians and educators can develop more effective education through collaboration, needs assessment, instructional design, and iterative content development.


Assuntos
Estudos Interdisciplinares , Adulto , Humanos , Escolaridade
7.
medRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034657

RESUMO

Background: Sudden unexpected death in children is a tragic event. Understanding the genetics of sudden death in the young (SDY) enables family counseling and cascade screening. The objective of this study was to characterize genetic variation in an SDY cohort using whole genome sequencing. Methods: The SDY Case Registry is a National Institutes of Health/Centers for Disease Control surveillance effort to discern the prevalence, causes, and risk factors for SDY. The SDY Case Registry prospectively collected clinical data and DNA biospecimens from SDY cases <20 years of age. SDY cases were collected from medical examiner and coroner offices spanning 13 US jurisdictions from 2015-2019. The cohort included 211 children (mean age 1 year; range 0-20 years), determined to have died suddenly and unexpectedly and in whom DNA biospecimens and next-of-kin consent were ascertained. A control cohort consisted of 211 randomly sampled, sex-and ancestry-matched individuals from the 1000 Genomes Project. Genetic variation was evaluated in epilepsy, cardiomyopathy and arrhythmia genes in the SDY and control cohorts. American College of Medical Genetics/Genomics guidelines were used to classify variants as pathogenic or likely pathogenic. Additionally, genetic variation predicted to be damaging was identified using a Bayesian-based artificial intelligence (AI) tool. Results: The SDY cohort was 42% European, 30% African, 17% Hispanic, and 11% with mixed ancestries, and 39% female. Six percent of the cohort was found to harbor a pathogenic or likely pathogenic genetic variant in an epilepsy, cardiomyopathy or arrhythmia gene. The genomes of SDY cases, but not controls, were enriched for rare, damaging variants in epilepsy, cardiomyopathy and arrhythmia-related genes. A greater number of rare epilepsy genetic variants correlated with younger age at death. Conclusions: While damaging cardiomyopathy and arrhythmia genes are recognized contributors to SDY, we also observed an enrichment in epilepsy-related genes in the SDY cohort, and a correlation between rare epilepsy variation and younger age at death. These findings emphasize the importance of considering epilepsy genes when evaluating SDY.

8.
Acad Forensic Pathol ; 12(4): 129-139, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545303

RESUMO

Introduction: Postmortem genetic testing (PMGT) can provide valuable information about an individual's cause of death and potentially allow at-risk relatives to discern their risks for inherited cardiac disease. Postmortem genetic testing is most often successful with certain specimens. Methods: Investigators collected data on postmortem referrals to GeneDx, LLC for PMGT. Orders were reviewed and stratified based on provider, specimen type, and tests ordered. Discussion: This cohort included 601 deceased individuals referred for PMGT with a total of 673 genetic tests ordered from 247 different providers. The most common test categories ordered were arrhythmia (33.4%) and cardiomyopathy (29.3%). A likely pathogenic or pathogenic genetic variant was identified in approximately 15% of patients. Blood in EDTA was received for 21.6% of patients with a 95% success rate for completion of all test components. Blood samples in EDTA were most successful in completing PMGT, but sequencing was still successful in the majority of suboptimal specimens. Conclusion: The use of PMGT is increasing. Obtaining optimal samples (blood in EDTA) is important for successful completion of genetic testing. Obstacles may still exist for obtaining and storing ideal specimens. Continued efforts are needed for education and awareness around appropriate specimen types, storage and shipping of specimens, DNA banking, and overall availability of PMGT. In addition, access to resources such as supplies, proper storage conditions, DNA banking, and PMGT will allow for more opportunities to complete testing.

9.
JAMA Cardiol ; 7(9): 966-974, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947370

RESUMO

Importance: Genetic testing can guide management of both cardiomyopathies and arrhythmias, but cost, yield, and uncertain results can be barriers to its use. It is unknown whether combined disease testing can improve diagnostic yield and clinical utility for patients with a suspected genetic cardiomyopathy or arrhythmia. Objective: To evaluate the diagnostic yield and clinical management implications of combined cardiomyopathy and arrhythmia genetic testing through a no-charge, sponsored program for patients with a suspected genetic cardiomyopathy or arrhythmia. Design, Setting, and Participants: This cohort study involved a retrospective review of DNA sequencing results for cardiomyopathy- and arrhythmia-associated genes. The study included 4782 patients with a suspected genetic cardiomyopathy or arrhythmia who were referred for genetic testing by 1203 clinicians; all patients participated in a no-charge, sponsored genetic testing program for cases of suspected genetic cardiomyopathy and arrhythmia at a single testing site from July 12, 2019, through July 9, 2020. Main Outcomes and Measures: Positive gene findings from combined cardiomyopathy and arrhythmia testing were compared with findings from smaller subtype-specific gene panels and clinician-provided diagnoses. Results: Among 4782 patients (mean [SD] age, 40.5 [21.3] years; 2551 male [53.3%]) who received genetic testing, 39 patients (0.8%) were Ashkenazi Jewish, 113 (2.4%) were Asian, 571 (11.9%) were Black or African American, 375 (7.8%) were Hispanic, 2866 (59.9%) were White, 240 (5.0%) were of multiple races and/or ethnicities, 138 (2.9%) were of other races and/or ethnicities, and 440 (9.2%) were of unknown race and/or ethnicity. A positive result (molecular diagnosis) was confirmed in 954 of 4782 patients (19.9%). Of those, 630 patients with positive results (66.0%) had the potential to inform clinical management associated with adverse clinical outcomes, increased arrhythmia risk, or targeted therapies. Combined cardiomyopathy and arrhythmia gene panel testing identified clinically relevant variants for 1 in 5 patients suspected of having a genetic cardiomyopathy or arrhythmia. If only patients with a high suspicion of genetic cardiomyopathy or arrhythmia had been tested, at least 137 positive results (14.4%) would have been missed. If testing had been restricted to panels associated with the clinician-provided diagnostic indications, 75 of 689 positive results (10.9%) would have been missed; 27 of 75 findings (36.0%) gained through combined testing involved a cardiomyopathy indication with an arrhythmia genetic finding or vice versa. Cascade testing of family members yielded 402 of 958 positive results (42.0%). Overall, 2446 of 4782 patients (51.2%) had only variants of uncertain significance. Patients referred for arrhythmogenic cardiomyopathy had the lowest rate of variants of uncertain significance (81 of 176 patients [46.0%]), and patients referred for catecholaminergic polymorphic ventricular tachycardia had the highest rate (48 of 76 patients [63.2%]). Conclusions and Relevance: In this study, comprehensive genetic testing for cardiomyopathies and arrhythmias revealed diagnoses that would have been missed by disease-specific testing. In addition, comprehensive testing provided diagnostic and prognostic information that could have potentially changed management and monitoring strategies for patients and their family members. These results suggest that this improved diagnostic yield may outweigh the burden of uncertain results.


Assuntos
Cardiomiopatias , Testes Genéticos , Adulto , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/etnologia , Cardiomiopatias/genética , Estudos de Coortes , Testes Genéticos/métodos , Humanos , Masculino , Estudos Retrospectivos
10.
Genet Med ; 24(10): 2123-2133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35943490

RESUMO

PURPOSE: We estimated the penetrance of pathogenic/likely pathogenic (P/LP) variants in arteriopathy-related genes and assessed near-term outcomes following return of results. METHODS: Participants (N = 24,520) in phase III of the Electronic Medical Records and Genomics network underwent targeted sequencing of 68 actionable genes, including 9 genes associated with arterial aneurysmal diseases. Penetrance was estimated on the basis of the presence of relevant clinical traits. Outcomes occurring within 1 year of return of results included new diagnoses, referral to a specialist, new tests ordered, surveillance initiated, and new medications started. RESULTS: P/LP variants were present in 34 participants. The average penetrance across genes was 59%, ranging from 86% for FBN1 variants to 25% for SMAD3. Of 16 participants in whom results were returned, 1-year outcomes occurred in 63%. A new diagnosis was made in 44% of the participants, 56% were referred to a specialist, a new test was ordered in 44%, surveillance was initiated in 31%, and a new medication was started in 31%. CONCLUSION: Penetrance of P/LP variants in arteriopathy-related genes, identified in a large, targeted sequencing study, was variable and overall lower than that reported in clinical cohorts. Meaningful outcomes within the first year were noted in 63% of participants who received results.


Assuntos
Genômica , Humanos , Penetrância , Fenótipo
11.
J Am Heart Assoc ; 11(7): e023763, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322684

RESUMO

Background Educating cardiologists and health care professionals about cardiovascular genetics and genetic testing is essential to improving diagnosis and management of patients with inherited cardiomyopathies and arrhythmias and those at higher risk for sudden cardiac death. The aim of this study was to understand cardiology and electrophysiology practitioners' current practices, confidence, and knowledge surrounding genetic testing in cardiology and desired topics for an educational program. Methods and Results A one-time survey was administered through purposive email solicitation to 131 cardiology practitioners in the United States. Of these, 107 self-identified as nongenetic practitioners. Over three quarters of nongenetic practitioners reported that they refer patients to genetic providers to discuss cardiovascular genetic tests (n=82; 76.6%). More than half of nongenetic practitioners reported that they were not confident about the types of cardiovascular genetic testing available (n=60; 56%) and/or in ordering appropriate cardiovascular genetic tests (n=66; 62%). In addition, 45% (n=22) of nongenetic practitioners did not feel confident making cardiology treatment recommendations based on genetic test results. Among all providers, the most desired topics for an educational program were risk assessment (94%) and management of inherited cardiac conditions based on guidelines (91%). Conclusions This study emphasizes the importance of access to genetics services in the cardiology field and the need for addressing the identified deficit in confidence and knowledge about cardiogenetics and genetic testing among nongenetic providers. Additional research is needed, including more practitioners from underserved areas.


Assuntos
Cardiologistas , Cardiologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Testes Genéticos , Humanos , Medição de Risco , Estados Unidos
12.
Genet Med ; 24(5): 1054-1061, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339388

RESUMO

PURPOSE: Recent advances in genetics can facilitate the identification of at-risk individuals and diagnosis of cardiovascular disorders. As a nascent field, more research is needed to optimize the clinical practice of cardiovascular genetics, including the assessment of educational needs to promote appropriate use of genetic testing. METHODS: Qualitative interviews conducted with cardiovascular specialists (N = 43) were audiotaped. Thematic analysis was conducted on professional transcripts. RESULTS: Participants recognized the value of genetics in identifying and diagnosing at-risk individuals. However, organizational systems, cost, and feeling of unpreparedness were identified as barriers. Participants felt that the rapid pace of genetic science resulted in further challenges to maintaining an adequate knowledge base and highlighted genetics experts' importance. Even when a genetics expert was available, participants wanted to know more about which patients benefit most from genetic testing and expressed a desire to better understand management recommendations associated with a positive test result. CONCLUSION: Participants recognized the benefit but felt underprepared to provide recommendations for genetic testing and, in some cases, lacked organizational resources to refer patients to a genetics expert. Additional training in genetics for cardiology practitioners and ensuring availability of a genetics expert can improve the use of genetics in cardiology settings.


Assuntos
Cardiologia , Testes Genéticos , Humanos
13.
J Am Heart Assoc ; 11(1): e022854, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935411

RESUMO

Background Pediatric dilated cardiomyopathy (DCM) is a well-known clinical entity; however, phenotype-genotype correlations are inadequately described. Our objective was to provide genotype associations with life-threatening cardiac outcomes in pediatric DCM probands. Methods and Results We performed a retrospective review of children with DCM at a large pediatric referral center (2007-2016), excluding syndromic, chemotherapy-induced, and congenital heart disease causes. Genetic variants were adjudicated by an expert panel and an independent clinical laboratory. In a cohort of 109 pediatric DCM cases with a mean age at diagnosis of 4.2 years (SD 5.9), life-threatening cardiac outcomes occurred in 47% (42% heart transplant, 5% death). One or more pathogenic/likely pathogenic variants were present in 40/109 (37%), and 36/44 (82%) of pathogenic/likely pathogenic variants occurred in sarcomeric genes. The frequency of pathogenic/likely pathogenic variants was not different in patients with familial cardiomyopathy (15/33 with family history versus 25/76 with no family history, P=0.21). TTN truncating variants occurred in a higher percentage of children diagnosed as teenagers (26% teenagers versus 6% younger children, P=0.01), but life-threatening cardiac outcomes occurred in both infants and teenagers with these TTN variants. DCM with left ventricular noncompaction features occurred in 6/6 patients with MYH7 variants between amino acids 1 and 600. Conclusions Sarcomeric variants were common in pediatric DCM. We demonstrated genotype-specific associations with age of diagnosis and cardiac outcomes. In particular, MYH7 had domain-specific association with DCM with left ventricular noncompaction features. Family history did not predict pathogenic/likely pathogenic variants, reinforcing that genetic testing should be considered in all children with idiopathic DCM.


Assuntos
Cardiomiopatia Dilatada , Adolescente , Criança , Estudos de Associação Genética , Testes Genéticos , Genótipo , Humanos , Mutação , Sarcômeros
15.
JAMA Cardiol ; 6(11): 1247-1256, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379075

RESUMO

Importance: Postmortem genetic testing of young individuals with sudden death has previously identified pathogenic gene variants. However, prior studies primarily considered highly penetrant monogenic variants, often without detailed decedent and family clinical information. Objective: To assess genotype and phenotype risk in a diverse cohort of young decedents with sudden death and their families. Design, Setting, and Participants: Pathological and whole-genome sequence analysis was conducted in a cohort referred from a national network of medical examiners. Cases were accrued prospectively from May 2015 to March 2019 across 24 US states. Analysis began September 2016 and ended November 2020. Exposures: Evaluation of autopsy and clinical data integrated with whole-genome sequence data and family member evaluation. Results: A total of 103 decedents (mean [SD] age at death, 23.7 [11.9] years; age range, 1-44 years), their surviving family members, and 140 sex- and genetic ancestry-matched controls were analyzed. Among 103 decedents, autopsy and clinical data review categorized 36 decedents with postmortem diagnoses, 23 decedents with findings of uncertain significance, and 44 with sudden unexplained death. Pathogenic/likely pathogenic (P/LP) genetic variants in arrhythmia or cardiomyopathy genes were identified in 13 decedents (12.6%). A multivariable analysis including decedent phenotype, ancestry, and sex demonstrated that younger decedents had a higher burden of P/LP variants and select variants of uncertain significance (effect size, -1.64; P = .001). These select, curated variants of uncertain significance in cardiac genes were more common in decedents than controls (83 of 103 decedents [86%] vs 100 of 140 controls [71%]; P = .005), and decedents harbored more rare cardiac variants than controls (2.3 variants per individual vs 1.8 in controls; P = .006). Genetic testing of 31 parent-decedent trios and 14 parent-decedent dyads revealed 8 transmitted P/LP variants and 1 de novo P/LP variant. Incomplete penetrance was present in 6 of 8 parents who transmitted a P/LP variant. Conclusions and Relevance: Whole-genome sequencing effectively identified P/LP variants in cases of sudden death in young individuals, implicating both arrhythmia and cardiomyopathy genes. Genomic analyses and familial phenotype association suggest potentially additive, oligogenic risk mechanisms for sudden death in this cohort.


Assuntos
Autopsia/métodos , Morte Súbita/patologia , Genômica/métodos , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Testes Genéticos/métodos , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Prospectivos , Adulto Jovem
16.
Am J Med Genet A ; 185(8): 2496-2501, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003581

RESUMO

Patients with biallelic mutations in the nuclear-encoded mitochondrial gene C1QBP/p32 have been described with syndromic features and autosomal recessive cardiomyopathy. We describe the clinical course in two siblings who developed cardiomyopathy and ventricular fibrillation in infancy. We provide genomic analysis and clinical-pathologic correlation. Both siblings had profound cardiac failure with ventricular arrhythmia. One child died suddenly. The second sibling survived resuscitation but required extracorporeal cardiopulmonary support and died shortly afterward. On cardiac autopsy, the left ventricle was hypertrophied in both children. Histological examination revealed prominent cardiomyocyte cytoplasmic clearing, and electron microscopy confirmed abnormal mitochondrial structure within cardiomyocytes. DNA sequencing revealed compound heterozygous variants in C1QBP (p.Thr40Asnfs*45 and p.Phe204Leu) in both children. Family segregation analysis demonstrated each variant was inherited from an unaffected, heterozygous parent. Inherited loss of C1QBP/p32 is associated with recessive cardiomyopathy, ventricular fibrillation, and sudden death in early life. Ultrastructural mitochondrial evaluation in the second child was similar to findings in engineered C1qbp-deficient mice. Rapid trio analysis can define rare biallelic variants in genes that may be implicated in sudden death and facilitate medical management and family planning. (184/200).


Assuntos
Alelos , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Proteínas de Transporte/genética , Genes Mitocondriais , Proteínas Mitocondriais/genética , Mutação , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/genética , Autopsia , Ecocardiografia , Eletrocardiografia , Evolução Fatal , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Gravidez , Ultrassonografia Pré-Natal
17.
J Am Heart Assoc ; 10(7): e019944, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764162

RESUMO

Background Inherited cardiomyopathies display variable penetrance and expression, and a component of phenotypic variation is genetically determined. To evaluate the genetic contribution to this variable expression, we compared protein coding variation in the genomes of those with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Methods and Results Nonsynonymous single-nucleotide variants (nsSNVs) were ascertained using whole genome sequencing from familial cases of HCM (n=56) or DCM (n=70) and correlated with echocardiographic information. Focusing on nsSNVs in 102 genes linked to inherited cardiomyopathies, we correlated the number of nsSNVs per person with left ventricular measurements. Principal component analysis and generalized linear models were applied to identify the probability of cardiomyopathy type as it related to the number of nsSNVs in cardiomyopathy genes. The probability of having DCM significantly increased as the number of cardiomyopathy gene nsSNVs per person increased. The increase in nsSNVs in cardiomyopathy genes significantly associated with reduced left ventricular ejection fraction and increased left ventricular diameter for individuals carrying a DCM diagnosis, but not for those with HCM. Resampling was used to identify genes with aberrant cumulative allele frequencies, identifying potential modifier genes for cardiomyopathy. Conclusions Participants with DCM had more nsSNVs per person in cardiomyopathy genes than participants with HCM. The nsSNV burden in cardiomyopathy genes did not correlate with the probability or manifestation of left ventricular measures in HCM. These findings support the concept that increased variation in cardiomyopathy genes creates a genetic background that predisposes to DCM and increased disease severity.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Adulto , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/fisiopatologia , Feminino , Genômica , Genótipo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
18.
Circ Heart Fail ; 13(10): e006926, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32993371

RESUMO

BACKGROUND: The failing heart is characterized by changes in gene expression. However, the regulatory regions of the genome that drive these gene expression changes have not been well defined in human hearts. METHODS: To define genome-wide enhancer and promoter use in heart failure, cap analysis of gene expression sequencing was applied to 3 healthy and 4 failed human hearts to identify promoter and enhancer regions used in left ventricles. Healthy hearts were derived from donors unused for transplantation and failed hearts were obtained as discarded tissue after transplantation. RESULTS: Cap analysis of gene expression sequencing identified a combined potential for ≈23 000 promoters and ≈5000 enhancers active in human left ventricles. Of these, 17 000 promoters and 1800 enhancers had additional support for their regulatory function. Comparing promoter usage between healthy and failed hearts highlighted promoter shifts which altered aminoterminal protein sequences. Enhancer usage between healthy and failed hearts identified a majority of differentially used heart failure enhancers were intronic and primarily localized within the first intron, revealing this position as a common feature associated with tissue-specific gene expression changes in the heart. CONCLUSIONS: This data set defines the dynamic genomic regulatory landscape underlying heart failure and serves as an important resource for understanding genetic contributions to cardiac dysfunction. Additionally, regulatory changes contributing to heart failure are attractive therapeutic targets for controlling ventricular remodeling and clinical progression.


Assuntos
Elementos Facilitadores Genéticos , Insuficiência Cardíaca/genética , Regiões Promotoras Genéticas , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , RNA-Seq , Transcrição Gênica , Transcriptoma , Adulto Jovem
19.
J Am Heart Assoc ; 9(18): e015699, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32885733

RESUMO

Background After sudden cardiac death in people aged <40 years, heart weight is a surrogate for cardiomegaly and a marker for cardiomyopathy. However, thresholds for cardiomegaly based on heart weight have not been validated in a cohort of cases of sudden cardiac death in young people. Methods and Results We surveyed medical examiner offices to determine which tools were used to assess heart weight norms. The survey determined that there was no gold standard for cardiomegaly (52 centers reported 22 different methods). We used a collection of heart weight data from sudden deaths in the Northwestern Sudden Death Collaboration (NSDC) to test the 22 methods. We found that the methods reported in our survey had little consistency: they classified between 18% and 81% of NSDC hearts with cardiomegaly. Therefore, we obtained biometric and postmortem data from a reference population of 3398 decedents aged <40 years. The reference population was ethnically diverse and had no known cardiac pathology on autopsy or histology. We derived and validated a multivariable regression model to predict normal heart weights and a threshold for cardiomegaly (upper 95% CI limit) in the young reference population (the Chicago model). Using the new model, the prevalence of cardiomegaly in hearts from the NSDC was 19%. Conclusions Medical examiner offices use a variety of tools to classify cardiomegaly. These approaches produce inconsistent results, and many overinterpret cardiomegaly. We recommend the model proposed to classify postmortem cardiomegaly in cases of sudden cardiac death in young people.


Assuntos
Cardiomegalia/mortalidade , Morte Súbita Cardíaca/etnologia , Miocárdio/patologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Cardiomegalia/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Morte Súbita Cardíaca/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Prevalência , Valores de Referência , Adulto Jovem
20.
Circulation ; 141(23): 1872-1884, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32372669

RESUMO

BACKGROUND: Mutations in desmoplakin (DSP), the primary force transducer between cardiac desmosomes and intermediate filaments, cause an arrhythmogenic form of cardiomyopathy that has been variably associated with arrhythmogenic right ventricular cardiomyopathy. Clinical correlates of DSP cardiomyopathy have been limited to small case series. METHODS: Clinical and genetic data were collected on 107 patients with pathogenic DSP mutations and 81 patients with pathogenic plakophilin 2 (PKP2) mutations as a comparison cohort. A composite outcome of severe ventricular arrhythmia was assessed. RESULTS: DSP and PKP2 cohorts included similar proportions of probands (41% versus 42%) and patients with truncating mutations (98% versus 100%). Left ventricular (LV) predominant cardiomyopathy was exclusively present among patients with DSP (55% versus 0% for PKP2, P<0.001), whereas right ventricular cardiomyopathy was present in only 14% of patients with DSP versus 40% for PKP2 (P<0.001). Arrhythmogenic right ventricular cardiomyopathy diagnostic criteria had poor sensitivity for DSP cardiomyopathy. LV late gadolinium enhancement was present in a primarily subepicardial distribution in 40% of patients with DSP (23/57 with magnetic resonance images). LV late gadolinium enhancement occurred with normal LV systolic function in 35% (8/23) of patients with DSP. Episodes of acute myocardial injury (chest pain with troponin elevation and normal coronary angiography) occurred in 15% of patients with DSP and were strongly associated with LV late gadolinium enhancement (90%), even in cases of acute myocardial injury with normal ventricular function (4/5, 80% with late gadolinium enhancement). In 4 DSP cases with 18F-fluorodeoxyglucose positron emission tomography scans, acute LV myocardial injury was associated with myocardial inflammation misdiagnosed initially as cardiac sarcoidosis or myocarditis. Left ventricle ejection fraction <55% was strongly associated with severe ventricular arrhythmias for DSP cases (P<0.001, sensitivity 85%, specificity 53%). Right ventricular ejection fraction <45% was associated with severe arrhythmias for PKP2 cases (P<0.001) but was poorly associated for DSP cases (P=0.8). Frequent premature ventricular contractions were common among patients with severe arrhythmias for both DSP (80%) and PKP2 (91%) groups (P=non-significant). CONCLUSIONS: DSP cardiomyopathy is a distinct form of arrhythmogenic cardiomyopathy characterized by episodic myocardial injury, left ventricular fibrosis that precedes systolic dysfunction, and a high incidence of ventricular arrhythmias. A genotype-specific approach for diagnosis and risk stratification should be used.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Displasia Arritmogênica Ventricular Direita/genética , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/genética , Desmoplaquinas/genética , Mutação/genética , Adulto , Displasia Arritmogênica Ventricular Direita/metabolismo , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatia Dilatada/metabolismo , Desmoplaquinas/metabolismo , Feminino , Fibrose , Humanos , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA