Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Euro Surveill ; 29(44)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39484686

RESUMO

BackgroundWest Nile virus (WNV) has an enzootic cycle between birds and mosquitoes, humans being incidental dead-end hosts. Circulation of WNV is an increasing public health threat in Europe. While detection of WNV is notifiable in humans and animals in the European Union, surveillance based on human case numbers presents some limitations, including reporting delays.AimWe aimed to perform risk mapping of WNV circulation leading to human infections in Europe by integrating two types of surveillance systems: indicator-based and event-based surveillance.MethodsFor indicator-based surveillance, we used data on human case numbers reported to the European Centre for Disease Prevention and Control (ECDC), and for event-based data, we retrieved information from news articles collected through an automated biosurveillance platform. In addition to these data sources, we also used environmental data to train ecological niche models to map the risk of local WNV circulation leading to human infections.ResultsThe ecological niche models based on both types of surveillance data highlighted new areas potentially at risk of WNV infection in humans, particularly in Spain, Italy, France and Greece.ConclusionAlthough event-based surveillance data do not constitute confirmed occurrence records, integrating both indicator-based and event-based surveillance data proved useful. These results underscore the potential for a more proactive and comprehensive strategy in managing the threat of WNV in Europe by combining indicator- and event-based and environmental data for effective surveillance and public health response.


Assuntos
Aves , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/diagnóstico , Humanos , Vírus do Nilo Ocidental/isolamento & purificação , Europa (Continente)/epidemiologia , Animais , Aves/virologia , Vigilância da População , Medição de Risco/métodos , Culicidae/virologia , Surtos de Doenças , Biovigilância/métodos
2.
BMC Infect Dis ; 24(1): 1139, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390446

RESUMO

We investigate the emergence, mutation profile, and dissemination of SARS-CoV-2 lineage B.1.214.2, first identified in Belgium in January 2021. This variant, featuring a 3-amino acid insertion in the spike protein similar to the Omicron variant, was speculated to enhance transmissibility or immune evasion. Initially detected in international travelers, it substantially transmitted in Central Africa, Belgium, Switzerland, and France, peaking in April 2021. Our travel-aware phylogeographic analysis, incorporating travel history, estimated the origin to the Republic of the Congo, with primary European entry through France and Belgium, and multiple smaller introductions during the epidemic. We correlate its spread with human travel patterns and air passenger data. Further, upon reviewing national reports of SARS-CoV-2 outbreaks in Belgian nursing homes, we found this strain caused moderately severe outcomes (8.7% case fatality ratio). A distinct nasopharyngeal immune response was observed in elderly patients, characterized by 80% unique signatures, higher B- and T-cell activation, increased type I IFN signaling, and reduced NK, Th17, and complement system activation, compared to similar outbreaks. This unique immune response may explain the variant's epidemiological behavior and underscores the need for nasal vaccine strategies against emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/epidemiologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Idoso , Masculino , Viagem , Bélgica/epidemiologia , Pessoa de Meia-Idade , Feminino , Adulto , Filogeografia , Nasofaringe/virologia
3.
Virus Evol ; 10(1): veae073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399151

RESUMO

Accumulating evidence points to persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunocompromised individuals as a source of novel lineages. While intrahost evolution of the virus in chronically infected patients has previously been reported, existing knowledge is primarily based on samples from the nasopharynx. In this study, we investigate the intrahost evolution and genetic diversity that accumulated during a prolonged SARS-CoV-2 infection with the Omicron BF.7 sublineage, which is estimated to have persisted for >1 year in an immunosuppressed patient. Based on the sequencing of eight samples collected at six time points, we identified 87 intrahost single-nucleotide variants, 2 indels, and a 362-bp deletion. Our analysis revealed distinct viral genotypes in the nasopharyngeal (NP), endotracheal aspirate, and bronchoalveolar lavage samples. This suggests that NP samples may not offer a comprehensive representation of the overall intrahost viral diversity. Our findings not only demonstrate that the Omicron BF.7 sublineage can further diverge from its already exceptionally mutated state but also highlight that patients chronically infected with SARS-CoV-2 can develop genetically specific viral populations across distinct anatomic compartments. This provides novel insights into the intricate nature of viral diversity and evolution dynamics in persistent infections.

4.
medRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39006420

RESUMO

Different factors influence the spread of SARS-CoV-2, from the inherent transmission capabilities of the different variants to the control measurements put in place. Here we studied the introduction of the Alpha, Delta, and Omicron-BA.1 variants of concern (VOCs) into Spain. For this, we collected genomic data from the GISAID database and combined it with connectivity data from different countries with Spain to perform a phylodynamic Bayesian analysis of the introductions. Our findings reveal that the introductions of these VOCs predominantly originated from France, especially in the case of Alpha. As travel restrictions were eased during the Delta and Omicron-BA.1 waves, the number of introductions from distinct countries increased, with the United Kingdom and Germany becoming significant sources of the virus. The largest number of introductions detected corresponded to the Delta wave, which was associated with fewer restrictions and the summer period, when Spain receives a considerable number of tourists. This research underscores the importance of monitoring international travel patterns and implementing targeted public health measures to manage the spread of SARS-CoV-2.

5.
medRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883783

RESUMO

Phylogeographic analyses are able to exploit the location data associated with sampled molecular sequences to reconstruct the spatio-temporal dispersal history of a pathogen. Visualisation software is commonly used to facilitate the interpretation of the accompanying estimation results, as these are not always easily interpretable. spread.gl is a powerful, open-source and feature-rich browser application that enables smooth, intuitive and user-friendly visualisation of both discrete and continuous phylogeographic inference results, enabling the animation of pathogen geographic dispersal through time. spread.gl can render and combine the visualisation of several data layers, including a geographic layer (e.g., a world map), multiple layers that contain information extracted from the input phylogeny, and different types of layers that represent environmental data. As such, users can explore which environmental data may have shaped pathogen dispersal patterns, that can subsequently be formally tested through more principled statistical analyses. We showcase the visualisation features of spread.gl on several representative pathogen dispersal examples, including the smooth animation of a phylogeny encompassing over 17,000 genomic sequences resulting from a large-scale SARS-CoV-2 analysis.

6.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895258

RESUMO

Accurate estimation of the dispersal velocity or speed of evolving organisms is no mean feat. In fact, existing probabilistic models in phylogeography or spatial population genetics generally do not provide an adequate framework to define velocity in a relevant manner. For instance, the very concept of instantaneous speed simply does not exist under one of the most popular approaches that models the evolution of spatial coordinates as Brownian trajectories running along a phylogeny [30]. Here, we introduce a new family of models - the so-called "Phylogenetic Integrated Velocity" (PIV) models - that use Gaussian processes to explicitly model the velocity of evolving lineages instead of focusing on the fluctuation of spatial coordinates over time. We describe the properties of these models and show an increased accuracy of velocity estimates compared to previous approaches. Analyses of West Nile virus data in the U.S.A. indicate that PIV models provide sensible predictions of the dispersal of evolving pathogens at a one-year time horizon. These results demonstrate the feasibility and relevance of predictive phylogeography in monitoring epidemics in time and space.

7.
J Med Virol ; 96(7): e29773, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38940448

RESUMO

The dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron-BA.1 variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the United States became increasingly significant. The number of detected introductions varied from 96 and 101 for Alpha and Delta to 39 for Omicron-BA.1. Most of these introductions left a low number of descendants (<10), suggesting a limited impact on the evolution of the pandemic in Galicia. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.


Assuntos
COVID-19 , SARS-CoV-2 , Espanha/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Humanos , SARS-CoV-2/genética , Genoma Viral , Filogenia , Pandemias
8.
Virus Evol ; 10(1): veae035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774310

RESUMO

The recombinant SARS-CoV-2 Omicron XBB.1.5 variant was first detected in New York City (NYC) and rapidly became the predominant variant in the area by early 2023. The increased occurrence of circulating variants within the SARS-CoV-2 XBB-sublineage prompted the modification of COVID-19 mRNA vaccines by Moderna and Pfizer-BioNTech. This update, implemented in mid-September 2023, involved the incorporation of a monovalent XBB.1.5 component. Considering that NYC probably played a central role in the emergence of the XBB.1.5 variant, we conducted phylogeographic analysis to investigate the emergence and spread of this variant in the metropolitan area. Our analysis confirms that XBB.1.5 emerged within or near the NYC area and indicates that XBB.1.5 had a diffusion velocity similar to that of the variant Alpha in the same study area. Additionally, the analysis of 2,392 genomes collected in the context of the genomic surveillance program at NYU Langone Health system showed that there was no increased proportion of XBB.1.5, relative to all cocirculating variants, in the boosted compared to unvaccinated individuals. This study provides a comprehensive description of the emergence and dissemination of XBB.1.5.

9.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38645268

RESUMO

Genomic data collected from viral outbreaks can be exploited to reconstruct the dispersal history of viral lineages in a two-dimensional space using continuous phylogeographic inference. These spatially explicit reconstructions can subsequently be used to estimate dispersal metrics allowing to unveil the dispersal dynamics and evaluate the capacity to spread among hosts. Heterogeneous sampling intensity of genomic sequences can however impact the accuracy of dispersal insights gained through phylogeographic inference. In our study, we implement a simulation framework to evaluate the robustness of three dispersal metrics - a lineage dispersal velocity, a diffusion coefficient, and an isolation-by-distance signal metric - to the sampling effort. Our results reveal that both the diffusion coefficient and isolation-by-distance signal metrics appear to be robust to the number of samples considered for the phylogeographic reconstruction. We then use these two dispersal metrics to compare the dispersal pattern and capacity of various viruses spreading in animal populations. Our comparative analysis reveals a broad range of isolation-by-distance patterns and diffusion coefficients mostly reflecting the dispersal capacity of the main infected host species but also, in some cases, the likely signature of rapid and/or long-distance dispersal events driven by human-mediated movements through animal trade. Overall, our study provides key recommendations for the lineage dispersal metrics to consider in future studies and illustrates their application to compare the spread of viruses in various settings.

10.
medRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463998

RESUMO

The dynamics of SARS-CoV-2 transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the USA became increasingly significant. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.

11.
Virus Evol ; 10(1): veae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435712

RESUMO

Avian influenza viruses (AIVs) of the H9N2 subtype have become widespread in Western Africa since their first detection in 2017 in Burkina Faso. However, the genetic characteristics and diffusion patterns of the H9N2 virus remain poorly understood in Western Africa, mainly due to limited surveillance activities. In addition, Mali, a country considered to play an important role in the epidemiology of AIVs in the region, lacks more comprehensive data on the genetic characteristics of these viruses, especially the H9N2 subtype. To better understand the genetic characteristics and spatio-temporal dynamics of H9N2 virus within this region, we carried out a comprehensive genetic characterization of H9N2 viruses collected through active surveillance in live bird markets in Mali between 2021 and 2022. We also performed a continuous phylogeographic analysis to unravel the dispersal history of H9N2 lineages between Northern and Western Africa. The identified Malian H9N2 virus belonged to the G1 lineage, similar to viruses circulating in both Western and Northern Africa, and possessed multiple molecular markers associated with an increased potential for zoonotic transmission and virulence. Notably, some Malian strains carried the R-S-N-R motif at their cleavage site, mainly observed in H9N2 strains in Asia. Our continuous phylogeographic analysis revealed a single and significant long-distance lineage dispersal event of the H9N2 virus to Western Africa, likely to have originated from Morocco in 2015, shaping the westward diffusion of the H9N2 virus. Our study highlights the need for long-term surveillance of H9N2 viruses in poultry populations in Western Africa, which is crucial for a better understanding of virus evolution and effective management against potential zoonotic AIV strain emergence.

12.
Nat Commun ; 15(1): 1837, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418815

RESUMO

Latin America and Caribbean (LAC) regions were an important epicenter of the COVID-19 pandemic and SARS-CoV-2 evolution. Through the COVID-19 Genomic Surveillance Regional Network (COVIGEN), LAC countries produced an important number of genomic sequencing data that made possible an enhanced SARS-CoV-2 genomic surveillance capacity in the Americas, paving the way for characterization of emerging variants and helping to guide the public health response. In this study we analyzed approximately 300,000 SARS-CoV-2 sequences generated between February 2020 and March 2022 by multiple genomic surveillance efforts in LAC and reconstructed the diffusion patterns of the main variants of concern (VOCs) and of interest (VOIs) possibly originated in the Region. Our phylogenetic analysis revealed that the spread of variants Gamma, Lambda and Mu reflects human mobility patterns due to variations of international air passenger transportation and gradual lifting of social distance measures previously implemented in countries. Our results highlight the potential of genetic data to reconstruct viral spread and unveil preferential routes of viral migrations that are shaped by human mobility patterns.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , América Latina/epidemiologia , Pandemias , Filogenia , COVID-19/epidemiologia , Região do Caribe/epidemiologia
13.
Nat Commun ; 15(1): 1196, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331945

RESUMO

West Nile virus (WNV) is an emerging mosquito-borne pathogen in Europe where it represents a new public health threat. While climate change has been cited as a potential driver of its spatial expansion on the continent, a formal evaluation of this causal relationship is lacking. Here, we investigate the extent to which WNV spatial expansion in Europe can be attributed to climate change while accounting for other direct human influences such as land-use and human population changes. To this end, we trained ecological niche models to predict the risk of local WNV circulation leading to human cases to then unravel the isolated effect of climate change by comparing factual simulations to a counterfactual based on the same environmental changes but a counterfactual climate where long-term trends have been removed. Our findings demonstrate a notable increase in the area ecologically suitable for WNV circulation during the period 1901-2019, whereas this area remains largely unchanged in a no-climate-change counterfactual. We show that the drastic increase in the human population at risk of exposure is partly due to historical changes in population density, but that climate change has also been a critical driver behind the heightened risk of WNV circulation in Europe.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/epidemiologia , Mudança Climática , Europa (Continente)/epidemiologia
14.
One Health ; 18: 100664, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193029

RESUMO

West Nile virus is one of the most widespread mosquito-borne zoonotic viruses, with unique transmission dynamics in various parts of the world. Genomic surveillance has provided important insights in the global patterns of West Nile virus emergence and spread. In Europe, multiple West Nile virus lineages have been isolated, with lineage 1a and 2 being the main lineages responsible for human infections. In contrast to North America, where a single introduction of lineage 1a resulted in the virus establishing itself in a new continent, at least 13 introductions of lineages 1a and 2 have occurred into Europe, which is likely a vast underestimation of the true number of introductions. Historically, lineage 1a was the main lineage circulating in Europe, but since the emergence of lineage 2 in the early 2000s, the latter has become the predominant lineage. This shift in West Nile virus lineage prevalence has been broadly linked to the expansion of the virus into northerly temperate regions, where autochthonous cases in animals and humans have been reported in Germany and The Netherlands. Here, we discuss how genomic analysis has increased our understanding of the epidemiology of West Nile virus in Europe, and we present a global Nextstrain build consisting of publicly available West Nile virus genomes (https://nextstrain.org/community/grubaughlab/WNV-Global). Our results elucidate recent insights in West Nile virus lineage dynamics in Europe, and discuss how expanded programs can fill current genomic surveillance gaps.

15.
Nature ; 628(8007): 337-341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37704726

RESUMO

Habitat degradation and climate change are globally acting as pivotal drivers of wildlife collapse, with mounting evidence that this erosion of biodiversity will accelerate in the following decades1-3. Here, we quantify the past, present and future ecological suitability of Europe for bumblebees, a threatened group of pollinators ranked among the highest contributors to crop production value in the northern hemisphere4-8. We demonstrate coherent declines of bumblebee populations since 1900 over most of Europe and identify future large-scale range contractions and species extirpations under all future climate and land use change scenarios. Around 38-76% of studied European bumblebee species currently classified as 'Least Concern' are projected to undergo losses of at least 30% of ecologically suitable territory by 2061-2080 compared to 2000-2014. All scenarios highlight that parts of Scandinavia will become potential refugia for European bumblebees; it is however uncertain whether these areas will remain clear of additional anthropogenic stressors not accounted for in present models. Our results underline the critical role of global change mitigation policies as effective levers to protect bumblebees from manmade transformation of the biosphere.


Assuntos
Biodiversidade , Ecossistema , Animais , Abelhas , Europa (Continente) , Animais Selvagens , Mudança Climática
16.
Sci Rep ; 13(1): 22195, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097713

RESUMO

Public holidays have been associated with SARS-CoV-2 incidence surges, although a firm link remains to be established. This association is sometimes attributed to events where transmissions occur at a disproportionately high rate, known as superspreading events. Here, we describe a sudden surge in new cases with the Omicron BA.1 strain amongst higher education students in Belgium. Contact tracers classed most of these cases as likely or possibly infected on New Year's Eve, indicating a direct trigger by New Year celebrations. Using a combination of contact tracing and phylogenetic data, we show the limited role of superspreading events in this surge. Finally, the numerous simultaneous transmissions allowed a unique opportunity to determine the distribution of incubation periods of the Omicron strain. Overall, our results indicate that, even under social restrictions, a surge in transmissibility of SARS-CoV-2 can occur when holiday celebrations result in small social gatherings attended simultaneously and communitywide.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Filogenia , Busca de Comunicante , Férias e Feriados
17.
Euro Surveill ; 28(45)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37943503

RESUMO

BackgroundThe earliest recognised infections by the SARS-CoV-2 Omicron variant (Pango lineage B.1.1.529) in Belgium and Switzerland suggested a connection to an international water polo tournament, held 12-14 November 2021 in Brno, Czechia.AimTo study the arrival and subsequent spread of the Omicron variant in Belgium and Switzerland, and understand the overall importance of this international sporting event on the number of infections in the two countries.MethodsWe performed intensive forward and backward contact tracing in both countries, supplemented by phylogenetic investigations using virus sequences of the suspected infection chain archived in public databases.ResultsThrough contact tracing, we identified two and one infected athletes of the Belgian and Swiss water polo teams, respectively, and subsequently also three athletes from Germany. In Belgium and Switzerland, four and three secondary infections, and three and one confirmed tertiary infections were identified. Phylogenetic investigation demonstrated that this sporting event played a role as the source of infection, but without a direct link with infections from South Africa and not as a superspreading event; the virus was found to already be circulating at that time in the countries involved.ConclusionThe SARS-CoV-2 Omicron variant started to circulate in Europe several weeks before its identification in South Africa on 24 November 2021. Accordingly, it can be assumed that travel restrictions are usually implemented too late to prevent the spread of newly detected SARS-CoV-2 variants to other regions. Phylogenetic analysis may modify the perception of an apparently clear result of intensive contact tracing.


Assuntos
COVID-19 , Esportes Aquáticos , Humanos , SARS-CoV-2/genética , Bélgica/epidemiologia , Suíça/epidemiologia , República Tcheca , Filogenia , COVID-19/epidemiologia , Alemanha
18.
Influenza Other Respir Viruses ; 17(10): e13202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37840842

RESUMO

Background: To support the COVID-19 pandemic response, many countries, including Belgium, implemented baseline genomic surveillance (BGS) programs aiming to early detect and characterize new SARS-CoV-2 variants. In parallel, Belgium maintained a sentinel network of six hospitals that samples patients with severe acute respiratory infections (SARI) and integrated SARS-CoV-2 detection within a broader range of respiratory pathogens. We evaluate the ability of the SARI surveillance to monitor general trends and early signals of viral genetic evolution of SARS-CoV-2 and compare it with the BGS as a reference model. Methods: Nine-hundred twenty-five SARS-CoV-2 positive samples from patients fulfilling the Belgian SARI definition between January 2020 and December 2022 were sequenced using the ARTIC Network amplicon tiling approach on a MinION platform. Weekly variant of concern (VOC) proportions and types were compared to those that were circulating between 2021 and 2022, using 96,251 sequences of the BGS. Results: SARI surveillance allowed timely detection of the Omicron (BA.1, BA.2, BA.4, and BA.5) and Delta (B.1.617.2) VOCs, with no to 2 weeks delay according to the start of their epidemic growth in the Belgian population. First detection of VOCs B.1.351 and P.1 took longer, but these remained minor in Belgium. Omicron BA.3 was never detected in SARI surveillance. Timeliness could not be evaluated for B.1.1.7, being already major at the start of the study period. Conclusions: Genomic surveillance of SARS-CoV-2 using SARI sentinel surveillance has proven to accurately reflect VOCs detected in the population and provides a cost-effective solution for long-term genomic monitoring of circulating respiratory viruses.


Assuntos
COVID-19 , Pneumonia , Humanos , SARS-CoV-2/genética , Pandemias , Vigilância de Evento Sentinela , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica , Hospitais
19.
PLOS Glob Public Health ; 3(10): e0002454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856430

RESUMO

Human group B Streptococcus (GBS) infections attributable to an invasive, hypervirulent sequence type (ST) 283 have been associated with freshwater fish consumption in Asia. The origin, geographic dispersion pathways and host transitions of GBS ST283 remain unresolved. We gather 328 ST283 isolate whole-genome sequences collected from humans and fish between 1998 and 2021, representing eleven countries across four continents. We apply Bayesian phylogeographic analyses to reconstruct the dispersal history of ST283 and combine ST283 phylogenies with genetic markers and host association to investigate host switching and the gain and loss of antimicrobial resistance and virulence factor genes. Initial dispersal within Asia followed ST283 emergence in the early 1980s, with Singapore, Thailand and Hong Kong observed as early transmission hubs. Subsequent intercontinental dispersal originating from Vietnam began in the decade commencing 2001, demonstrating ST283 holds potential to expand geographically. Furthermore, we observe bidirectional host switching, with the detection of more frequent human-to-fish than fish-to-human transitions, suggesting that sound wastewater management, hygiene and sanitation may help to interrupt chains of transmission between hosts. We also show that antimicrobial resistance and virulence factor genes were lost more frequently than gained across the evolutionary history of ST283. Our findings highlight the need for enhanced surveillance, clinical awareness, and targeted risk mitigation to limit transmission and reduce the impact of an emerging pathogen associated with a high-growth aquaculture industry.

20.
Viruses ; 15(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37896809

RESUMO

The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.


Assuntos
Bacteriófagos , Vírus de RNA , Viroses , Vírus , Humanos , Biologia Computacional , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA