Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(3): 800-817, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243601

RESUMO

Hearing loss is a major health concern affecting millions of people worldwide with currently limited treatment options. In clarin-2-deficient Clrn2-/- mice, used here as a model of progressive hearing loss, we report synaptic auditory abnormalities in addition to the previously demonstrated defects of hair bundle structure and mechanoelectrical transduction. We sought an in-depth evaluation of viral-mediated gene delivery as a therapy for these hearing-impaired mice. Supplementation with either the murine Clrn2 or human CLRN2 genes preserved normal hearing in treated Clrn2-/- mice. Conversely, mutated forms of CLRN2, identified in patients with post-lingual moderate to severe hearing loss, failed to prevent hearing loss. The ectopic expression of clarin-2 successfully prevented the loss of stereocilia, maintained normal mechanoelectrical transduction, preserved inner hair cell synaptic function, and ensured near-normal hearing thresholds over time. Maximal hearing preservation was observed when Clrn2 was delivered prior to the loss of transducing stereocilia. Our findings demonstrate that gene therapy is effective for the treatment of post-lingual hearing impairment and age-related deafness associated with CLRN2 patient mutations.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva , Humanos , Animais , Camundongos , Células Ciliadas Auditivas/metabolismo , Audição , Perda Auditiva/genética , Perda Auditiva/terapia , Estereocílios/metabolismo , Suplementos Nutricionais
2.
Hum Genet ; 141(3-4): 709-735, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353227

RESUMO

Usher syndrome (USH) is the most common cause of deaf-blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes-USH1, 2 and 3-according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype-phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.


Assuntos
Síndromes de Usher , Estudos de Associação Genética , Humanos , Mutação , Síndromes de Usher/genética
3.
Proc Natl Acad Sci U S A ; 117(49): 31278-31289, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229591

RESUMO

Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.


Assuntos
Surdez/genética , Genes Dominantes , Mutação/genética , Presbiacusia/genética , Fatores Etários , Idade de Início , Animais , Estudos de Casos e Controles , Estudos de Coortes , Heterozigoto , Humanos , Proteínas de Membrana/genética , Camundongos , MicroRNAs/genética , Mitocôndrias/genética , Sequenciamento do Exoma
4.
J Clin Med ; 9(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708116

RESUMO

Hearing impairment is the most frequent sensory deficit in humans of all age groups, from children (1/500) to the elderly (more than 50% of the over-75 s). Over 50% of congenital deafness are hereditary in nature. The other major causes of deafness, which also may have genetic predisposition, are aging, acoustic trauma, ototoxic drugs such as aminoglycosides, and noise exposure. Over the last two decades, the study of inherited deafness forms and related animal models has been instrumental in deciphering the molecular, cellular, and physiological mechanisms of disease. However, there is still no curative treatment for sensorineural deafness. Hearing loss is currently palliated by rehabilitation methods: conventional hearing aids, and for more severe forms, cochlear implants. Efforts are continuing to improve these devices to help users to understand speech in noisy environments and to appreciate music. However, neither approach can mediate a full recovery of hearing sensitivity and/or restoration of the native inner ear sensory epithelia. New therapeutic approaches based on gene transfer and gene editing tools are being developed in animal models. In this review, we focus on the successful restoration of auditory and vestibular functions in certain inner ear conditions, paving the way for future clinical applications.

5.
EMBO Mol Med ; 11(9): e10288, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31448880

RESUMO

Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.


Assuntos
Perda Auditiva/metabolismo , Estereocílios/metabolismo , Adulto , Idoso , Animais , Estudos de Coortes , Feminino , Células Ciliadas Auditivas/metabolismo , Audição , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estereocílios/genética
6.
Proc Natl Acad Sci U S A ; 116(16): 8010-8017, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936319

RESUMO

Noise overexposure causes oxidative stress, leading to auditory hair cell damage. Adaptive peroxisome proliferation involving pejvakin, a peroxisome-associated protein from the gasdermin family, has been shown to protect against this harmful oxidative stress. However, the role of pejvakin in peroxisome dynamics and homeostasis remains unclear. Here we show that sound overstimulation induces an early and rapid selective autophagic degradation of peroxisomes (pexophagy) in auditory hair cells from wild-type, but not pejvakin-deficient (Pjvk-/-), mice. Noise overexposure triggers recruitment of the autophagosome-associated protein MAP1LC3B (LC3B; microtubule-associated protein 1 light chain 3ß) to peroxisomes in wild-type, but not Pjvk-/-, mice. We also show that pejvakin-LC3B binding involves an LC3-interacting region within the predicted chaperone domain of pejvakin. In transfected cells and in vivo transduced auditory hair cells, cysteine mutagenesis experiments demonstrated the requirement for both C328 and C343, the two cysteine residues closest to the C terminus of pejvakin, for reactive oxygen species-induced pejvakin-LC3B interaction and pexophagy. The viral transduction of auditory hair cells from Pjvk-/- mice in vivo with both Pjvk and Lc3b cDNAs completely restored sound-induced pexophagy, fully prevented the development of oxidative stress, and resulted in normal levels of peroxisome proliferation, whereas Pjvk cDNA alone yielded only a partial correction of the defects. Overall, our results demonstrate that pexophagy plays a key role in noise-induced peroxisome proliferation and identify defective pexophagy as a cause of noise-induced hearing loss. They suggest that pejvakin acts as a redox-activated pexophagy receptor/adaptor, thereby identifying a previously unknown function of gasdermin family proteins.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva Provocada por Ruído , Macroautofagia/fisiologia , Proteínas , Animais , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/prevenção & controle , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
7.
J Clin Invest ; 128(8): 3382-3401, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985171

RESUMO

Clarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4-/-) and postnatal hair cell-specific conditional (Clrn1ex4fl/fl Myo15-Cre+/-) knockout mice. Clrn1ex4-/- mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/- mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavß2 auxiliary subunit and the PDZ domain-containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus-mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/- mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana , Sinapses , Síndromes de Usher , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Dependovirus , Modelos Animais de Doenças , Células Ciliadas Auditivas/patologia , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia , Síndromes de Usher/terapia
8.
Am J Hum Genet ; 98(6): 1266-1270, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259055

RESUMO

By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.


Assuntos
Cílios/patologia , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/etiologia , Mutação/genética , Monoéster Fosfórico Hidrolases/genética , Índice de Gravidade de Doença , Adulto , Idoso , Animais , Cílios/metabolismo , Feminino , Imunofluorescência , Células Ciliadas Auditivas/enzimologia , Perda Auditiva Neurossensorial/patologia , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Proteínas Tirosina Fosfatases , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
9.
Cell ; 163(4): 894-906, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26544938

RESUMO

A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.


Assuntos
Perda Auditiva Provocada por Ruído/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peroxissomos/metabolismo , Proteínas/metabolismo , Animais , Vias Auditivas , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Estresse Oxidativo , Proteínas/genética
10.
Hum Mol Genet ; 21(17): 3835-44, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22678063

RESUMO

We report a consanguineous Iranian family affected by congenital profound sensorineural deafness segregating in an autosomal recessive mode. Auditory tests implicated at least a cochlear defect in these patients. We mapped the deafness, autosomal recessive (DFNB) locus involved by linkage analysis to a 4.8 Mb region at chromosome 21q22.3-qter. Exclusion of the DFNB8/10 gene TMPRSS3, located in this chromosomal interval, led us to identify a new deafness locus, DFNB98. Whole exome sequencing allowed us to identify a homozygous frame-shifting mutation (c.1726G>T+c.1728delC) in the gene TSPEAR (thrombospondin-type laminin G domain and EAR repeats). This truncating mutation (p.V576LfsX37) impeded the secretion of the encoded protein by cells transfected with the mutated gene. Alternative splicing of TSPEAR transcripts predict two protein isoforms, 522 and 669 amino acids in length, both of which would be affected by the mutation. These isoforms are composed of a thrombospondin-type laminin G (TSP) domain followed by seven tandemly organized epilepsy-associated repeats (EARs), probably forming a ß-propeller domain. Tspear is expressed in a variety of murine tissues. Only the larger Tspear transcript was found in the cochlea, and the protein was detected by immunofluorescence at the surface of the hair bundles of sensory cells. The mammalian EAR protein family includes six known members. Defects in four of them, i.e. Lgi1, Lgi2, Vlgr1 and, we show here, TSPEAR, cause disorders with auditory features: epilepsy, which can include auditory features in humans; audiogenic seizures in animals; and/or hearing impairments in humans and mice. These observations demonstrate that EAR-containing proteins are essential for the development and function of the auditory system.


Assuntos
Surdez/genética , Loci Gênicos/genética , Proteínas/química , Proteínas/genética , Sequências Repetitivas de Aminoácidos/genética , Adulto , Animais , Audiometria , Sequência de Bases , Segregação de Cromossomos/genética , Cromossomos Humanos Par 21/genética , Cóclea/metabolismo , Feminino , Mutação da Fase de Leitura/genética , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Linhagem , Estrutura Terciária de Proteína , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA