Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(12): e23246, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37990646

RESUMO

There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.


Assuntos
Disfunção Erétil , Voo Espacial , Ausência de Peso , Humanos , Ratos , Masculino , Animais , Ausência de Peso/efeitos adversos , Disfunção Erétil/etiologia , Elevação dos Membros Posteriores
2.
Physiol Rep ; 10(24): e15548, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564177

RESUMO

Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head-up tilt (HUT) may augment prostate tumor perfusion and decrease hypoxia. The purpose of this study was to determine if an increase in the vascular hydrostatic gradient via 70° HUT increases tumor perfusion and decreases tumor hypoxia in a preclinical orthotopic model of prostate cancer. Male Copenhagen rats (n = 17) were orthotopically injected with Dunning R-3327 (AT-1) prostate adenocarcinoma cells to induce prostate tumors. After tumors were established, prostate tumor perfusion and hypoxia were measured in rats during level (0°) and 70° HUT positions. To compare the magnitude of the hydrostatic column to that present in humans, ultrasound was used to measure the heart to prostate distance in male human subjects to estimate the prostate vascular hydrostatic pressure with the upright posture. In young rats, no differences were detected in prostate tumor perfusion or prostate tumor hypoxia with 70° HUT versus the level position. However, from the retrospective study, young rats increased prostate vascular resistance to HUT, whereas aged rats lacked this response. Tumor vessels co-opted from existing functional vasculature in young rats may be sufficient to negate increases in perfusion pressure with HUT seen in aged rats. Additionally, in humans, the estimated hydrostatic column at the level of the prostate is five times greater than that of the rat. Therefore, 70° HUT may elicit increases in prostate/prostate tumor blood flow in humans that is not seen in rats.


Assuntos
Hemodinâmica , Neoplasias da Próstata , Humanos , Masculino , Ratos , Animais , Estudos Retrospectivos , Hipóxia , Perfusão , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia
3.
Precis Clin Med ; 4(2): 93-108, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34179686

RESUMO

Astronauts exhibit an assortment of clinical abnormalities in their eyes during long-duration spaceflight. The purpose of this study was to determine whether spaceflight induces epigenomic and transcriptomic reprogramming in the retina or alters the epigenetic clock. The mice were flown for 37 days in animal enclosure modules on the International Space Station; ground-based control animals were maintained under similar housing conditions. Mouse retinas were isolated and both DNA methylome and transcriptome were determined by deep sequencing. We found that a large number of genes were differentially methylated with spaceflight, whereas there were fewer differentially expressed genes at the transcriptome level. Several biological pathways involved in retinal diseases such as macular degeneration were significantly altered. Our results indicated that spaceflight decelerated the retinal epigenetic clock. This study demonstrates that spaceflight impacts the retina at the epigenomic and transcriptomic levels, and such changes could be involved in the etiology of eye-related disorders among astronauts.

4.
Sci Rep ; 11(1): 10469, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006989

RESUMO

Reduced knee weight-bearing from prescription or sedentary lifestyles are associated with cartilage degradation; effects on the meniscus are unclear. Rodents exposed to spaceflight or hind limb unloading (HLU) represent unique opportunities to evaluate this question. This study evaluated arthritic changes in the medial knee compartment that bears the highest loads across the knee after actual and simulated spaceflight, and recovery with subsequent full weight-bearing. Cartilage and meniscal degradation in mice were measured via microCT, histology, and proteomics and/or biochemically after: (1) ~ 35 days on the International Space Station (ISS); (2) 13-days aboard the Space Shuttle Atlantis; or (3) 30 days of HLU, followed by a 49-day weight-bearing readaptation with/without exercise. Cartilage degradation post-ISS and HLU occurred at similar spatial locations, the tibial-femoral cartilage-cartilage contact point, with meniscal volume decline. Cartilage and meniscal glycosaminoglycan content were decreased in unloaded mice, with elevated catabolic enzymes (e.g., matrix metalloproteinases), and elevated oxidative stress and catabolic molecular pathway responses in menisci. After the 13-day Shuttle flight, meniscal degradation was observed. During readaptation, recovery of cartilage volume and thickness occurred with exercise. Reduced weight-bearing from either spaceflight or HLU induced an arthritic phenotype in cartilage and menisci, and exercise promoted recovery.


Assuntos
Cartilagem Articular/fisiopatologia , Membro Posterior/fisiopatologia , Articulação do Joelho/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Fenótipo , Voo Espacial , Animais , Feminino , Glicosaminoglicanos/análise , Masculino , Menisco/química , Menisco/fisiopatologia , Camundongos , Modelos Animais , Suporte de Carga
5.
Am J Physiol Heart Circ Physiol ; 321(1): H1-H14, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989084

RESUMO

We tested the hypothesis that adiponectin deficiency attenuates cardiac and coronary microvascular function and prevents exercise training-induced adaptations of the myocardium and the coronary microvasculature in adult mice. Adult wild-type (WT) or adiponectin knockout (adiponectin KO) mice underwent treadmill exercise training or remained sedentary for 8-10 wk. Systolic and diastolic functions were assessed before and after exercise training or cage confinement. Vasoreactivity of coronary resistance arteries was assessed at the end of exercise training or cage confinement. Before exercise training, ejection fraction and fractional shortening were similar in adiponectin KO and WT mice, but isovolumic contraction time was significantly lengthened in adiponectin KO mice. Exercise training increased ejection fraction (12%) and fractional shortening (20%) with no change in isovolumic contraction time in WT mice. In adiponectin KO mice, both ejection fraction (-9%) and fractional shortening (-12%) were reduced after exercise training and these decreases were coupled to a further increase in isovolumic contraction time (20%). In sedentary mice, endothelium-dependent dilation to flow was higher in arterioles from adiponectin KO mice as compared with WT mice. Exercise training enhanced dilation to flow in WT mice but decreased flow-induced dilation in adiponectin KO mice. These data suggest that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice lacking adiponectin; however, in the absence of adiponectin, cardiac and coronary microvascular adaptations to exercise training are compromised.NEW & NOTEWORTHY We report that compensatory mechanisms contribute to the maintenance of cardiac and coronary microvascular function in sedentary mice in which adiponectin has been deleted; however, when mice lacking adiponectin are subjected to the physiological stress of exercise training, beneficial coronary microvascular and cardiac adaptations are compromised or absent.


Assuntos
Adiponectina/genética , Coração/fisiologia , Condicionamento Físico Animal/fisiologia , Vasodilatação/fisiologia , Adiponectina/metabolismo , Animais , Endotélio Vascular/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Microvasos/fisiologia , Miocárdio/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-33902391

RESUMO

Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.


Assuntos
Astronautas , Radiação Cósmica , Exposição à Radiação , Voo Espacial , Ausência de Peso , Elevação dos Membros Posteriores , Humanos , Atividade Solar , Suporte de Carga
7.
FASEB J ; 34(11): 15516-15530, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32981077

RESUMO

Many factors contribute to the health risks encountered by astronauts on missions outside Earth's atmosphere. Spaceflight-induced potential adverse neurovascular damage and late neurodegeneration are a chief concern. The goal of the present study was to characterize the effects of spaceflight on oxidative damage in the mouse brain and its impact on blood-brain barrier (BBB) integrity. Ten-week-old male C57BL/6 mice were launched to the International Space Station (ISS) for 35 days as part of Space-X 12 mission. Ground control (GC) mice were maintained on Earth in flight hardware cages. Within 38 ± 4 hours after returning from the ISS, mice were euthanized and brain tissues were collected for analysis. Quantitative assessment of brain tissue demonstrated that spaceflight caused an up to 2.2-fold increase in apoptosis in the hippocampus compared to the control group. Immunohistochemical analysis of the mouse brain revealed an increased expression of aquaporin4 (AQP4) in the flight hippocampus compared to the controls. There was also a significant increase in the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) and a decrease in the expression of the BBB-related tight junction protein, Zonula occludens-1 (ZO-1). These results indicate a disturbance of BBB integrity. Quantitative proteomic analysis showed significant alterations in pathways responsible for neurovascular integrity, mitochondrial function, neuronal structure, protein/organelle transport, and metabolism in the brain after spaceflight. Changes in pathways associated with adhesion and molecular remodeling were also documented. These data indicate that long-term spaceflight may have pathological and functional consequences associated with neurovascular damage and late neurodegeneration.


Assuntos
Barreira Hematoencefálica/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Mitocôndrias/patologia , Estresse Oxidativo/efeitos da radiação , Proteoma/análise , Voo Espacial/métodos , Animais , Apoptose , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos da radiação , Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteoma/efeitos da radiação , Ausência de Peso
8.
Front Physiol ; 11: 675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695017

RESUMO

Introduction: Mechanical forces and sympathetic influences are key determinants of vascular structure and function. This study tested the hypothesis that hindlimb unloading (HU) exerts diverse effects on forelimb and hindlimb small arteries of rats in functionally different regions of the skeletal muscle and skin. Methods: Male Wistar rats were subjected to HU for 2 weeks, then skeletal muscle arteries (deep brachial and sural) and skin arteries (median and saphenous) were examined in vitro using wire myography or isobaric perfusion and glyoxylic acid staining. Results: HU increased lumen diameter of both forelimb arteries but decreased diameter of the sural artery; the saphenous artery diameter was not affected. Following HU, maximal contractile responses to noradrenaline and serotonin increased in the forelimb but decreased in the hindlimb skeletal muscle feed arteries with no change in skin arteries; all region-specific alterations persisted after endothelium removal. HU increased the sensitivity to vasoconstrictors in the saphenous artery but not in the sural artery. In the saphenous artery, initially high sympathetic innervation density was reduced by HU, sparse innervation in the sural artery was not affected. Electrical stimulation of periarterial sympathetic nerves in isobarically perfused segments of the saphenous artery demonstrated a two-fold decrease of the contractile responses in HU rats compared to that of controls. Conclusion: HU induces contrasting structural and functional adaptations in forelimb and hindlimb skeletal muscle arteries. Additionally, HU had diverse effects in two hindlimb vascular regions. Hyper-sensitivity of the saphenous artery to vasoconstrictors appears to result from the shortage of trophic sympathetic influence. Importantly, HU impaired sympathetically induced arterial vasoconstriction, consistent with the decreased sympathetic constrictor response in humans following space flight.

9.
Life Sci Space Res (Amst) ; 24: 9-17, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31987483

RESUMO

The long-term adaptations to microgravity and other spaceflight challenges within the confines of a spacecraft, and readaptations to weight-bearing upon reaching a destination, are unclear. While post-flight gait change in astronauts have been well documented and reflect multi-system deficits, no data from rodents have been collected. Thus, the purpose of this study was to evaluate gait changes in response to spaceflight. A prospective collection of gait data was collected on 3 groups of mice: those who spent~35 days in orbit (FLIGHT) aboard the International Space Station (ISS); a ground-based control with the same habitat conditions as ISS (Ground Control; GC); and a vivarium control with typical rodent housing conditions (VIV). Pre-flight and post-flight gait measurements were conducted utilizing an optimized and portable gait analysis system (DigiGait, Mouse Specifics, Inc). The total data acquisition time for gait patterns of FLIGHT and control mice was 1.5-5 min/mouse, allowing all 20 mice per group to be assessed in less than an hour. Patterns of longitudinal gait changes were observed in the hind limbs and the forelimbs of the FLIGHT mice after ~35 days in orbit; few differences were observed in gait characteristics within the GC and VIV controls from the initial to the final gait assessment, and between groups. For FLIGHT mice, 12 out of 18 of the evaluated gait characteristics in the hind limbs were significantly changed, including: stride width variability; stride length and variance; stride, swing, and stance duration; paw angle and area at peak stance; and step angle, among others. Gait characteristics that decreased included stride frequency, and others. Moreover, numerous forelimb gait characteristics in the FLIGHT mice were changed at post-flight measures relative to pre-flight. This rapid DigiGait gait measurement tool and customized spaceflight protocol is useful for providing preliminary insight into how spaceflight could affect multiple systems in rodents in which deficits are reflected by altered gait characteristics.


Assuntos
Marcha , Ausência de Peso , Animais , Extremidades , Marcha/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Astronave , Fatores de Tempo , Ausência de Peso/efeitos adversos
10.
Sci Rep ; 9(1): 13304, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527661

RESUMO

Extended spaceflight has been shown to adversely affect astronaut visual acuity. The purpose of this study was to determine whether spaceflight alters gene expression profiles and induces oxidative damage in the retina. Ten week old adult C57BL/6 male mice were flown aboard the ISS for 35 days and returned to Earth alive. Ground control mice were maintained on Earth under identical environmental conditions. Within 38 (+/-4) hours after splashdown, mice ocular tissues were collected for analysis. RNA sequencing detected 600 differentially expressed genes (DEGs) in murine spaceflight retinas, which were enriched for genes related to visual perception, the phototransduction pathway, and numerous retina and photoreceptor phenotype categories. Twelve DEGs were associated with retinitis pigmentosa, characterized by dystrophy of the photoreceptor layer rods and cones. Differentially expressed transcription factors indicated changes in chromatin structure, offering clues to the observed phenotypic changes. Immunofluorescence assays showed degradation of cone photoreceptors and increased retinal oxidative stress. Total retinal, retinal pigment epithelium, and choroid layer thickness were significantly lower after spaceflight. These results indicate that retinal performance may decrease over extended periods of spaceflight and cause visual impairment.


Assuntos
Regulação da Expressão Gênica/fisiologia , Retina/fisiologia , Ausência de Peso/efeitos adversos , Animais , Sistemas Ecológicos Fechados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Voo Espacial/métodos , Transcriptoma/genética , Visão Ocular/genética , Acuidade Visual/fisiologia
11.
Int J Mol Sci ; 19(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154332

RESUMO

Astronauts are reported to have experienced some impairment in visual acuity during their mission on the International Space Station (ISS) and after they returned to Earth. There is emerging evidence that changes in vision may involve alterations in ocular structure and function. To investigate possible mechanisms, changes in protein expression profiles and oxidative stress-associated apoptosis were examined in mouse ocular tissue after spaceflight. Nine-week-old male C57BL/6 mice (n = 12) were launched from the Kennedy Space Center on a SpaceX rocket to the ISS for a 35-day mission. The animals were housed in the mouse Habitat Cage Unit (HCU) in the Japan Aerospace Exploration Agency (JAXA) "Kibo" facility on the ISS. The flight mice lived either under an ambient microgravity condition (µg) or in a centrifugal habitat unit that produced 1 g artificial gravity (µg + 1 g). Habitat control (HC) and vivarium control mice lived on Earth in HCUs or normal vivarium cages, respectively. Quantitative assessment of ocular tissue demonstrated that the µg group induced significant apoptosis in the retina vascular endothelial cells compared to all other groups (p < 0.05) that was 64% greater than that in the HC group. Proteomic analysis showed that many key pathways responsible for cell death, cell repair, inflammation, and metabolic stress were significantly altered in µg mice compared to HC animals. Additionally, there were more significant changes in regulated protein expression in the µg group relative to that in the µg + 1 g group. These data provide evidence that spaceflight induces retinal apoptosis of vascular endothelial cells and changes in retinal protein expression related to cellular structure, immune response and metabolic function, and that artificial gravity (AG) provides some protection against these changes. These retinal cellular responses may affect blood⁻retinal barrier (BRB) integrity, visual acuity, and impact the potential risk of developing late retinal degeneration.


Assuntos
Gravidade Alterada , Retina/fisiologia , Voo Espacial , Ausência de Peso , Animais , Apoptose , Células Endoteliais/metabolismo , Masculino , Camundongos , Estresse Oxidativo , Proteoma , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
12.
Pharmacol Res Perspect ; 6(4): e00409, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29938113

RESUMO

The G protein-coupled estrogen receptor (GPER) is a significant modulator of arterial contractility and blood flow. The GPER-specific activator, G-1, has been widely used to characterize GPER function in a variety of tissue types. Large conductance, calcium (Ca2+)-activated K+ (BK) channels are sensitive to 17ß-estradiol (17ß-E2) and estrogenic compounds (e.g., tamoxifen, ICI 182 780) that target estrogen receptors. The purpose of this study was to investigate the effects of G-1 on BK channel activation and function in cerebral arterial myocytes. Inside-out and perforated patch clamp were utilized to assess the effects of G-1 (50 nmol·L-1-5 µmol·L-1) on BK channel activation and currents in cerebral arterial myocytes. Pressurized artery myography was used to investigate the effects of G-1 on vasodilatory response and BK channel function of cerebral resistance size arteries. G-1 reduced BK channel activation in cerebral arterial myocytes through elevations in BK channel mean close times. Depressed BK channel activation following G-1 application resulted in attenuated physiological BK currents (transient BK currents). G-1 elicited vasodilation, but reduced BK channel function, in pressurized, endothelium-denuded cerebral arteries. These data suggest that G-1 directly suppresses BK channel activation and currents in cerebral arterial myocytes, BK channels being critically important in the regulation of myocyte membrane potential and arterial contractility. Thus, GPER-mediated vasodilation using G-1 to activate the receptor may underestimate the physiological function and relevance of GPER in the cardiovascular system.


Assuntos
Ciclopentanos/farmacologia , Estrogênios/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Artérias Cerebrais/citologia , Feminino , Miócitos de Músculo Liso/fisiologia , Ratos Sprague-Dawley , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia
13.
J Appl Physiol (1985) ; 124(1): 140-149, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025901

RESUMO

Coronary microvascular function and blood flow responses during acute exercise are impaired in the aged heart but can be restored by exercise training. Coronary microvascular resistance is directly dependent on vascular smooth muscle function in coronary resistance arterioles; therefore, we hypothesized that age impairs contractile function and alters the phenotype of vascular smooth muscle in coronary arterioles. We further hypothesized that exercise training restores contractile function and reverses age-induced phenotypic alterations of arteriolar smooth muscle. Young and old Fischer 344 rats underwent 10 wk of treadmill exercise training or remained sedentary. At the end of training or cage confinement, contractile responses, vascular smooth muscle proliferation, and expression of contractile proteins were assessed in isolated coronary arterioles. Both receptor- and non-receptor-mediated contractile function were impaired in coronary arterioles from aged rats. Vascular smooth muscle shifted from a differentiated, contractile phenotype to a secretory phenotype with associated proliferation of smooth muscle in the arteriolar wall. Expression of smooth muscle myosin heavy chain 1 (SM1) was decreased in arterioles from aged rats, whereas expression of phospho-histone H3 and of the synthetic protein ribosomal protein S6 (rpS6) were increased. Exercise training improved contractile responses, reduced smooth muscle proliferation and expression of rpS6, and increased expression of SM1 in arterioles from old rats. Thus age-induced contractile dysfunction of coronary arterioles and emergence of a secretory smooth muscle phenotype may contribute to impaired coronary blood flow responses, but arteriolar contractile responsiveness and a younger smooth muscle phenotype can be restored with late-life exercise training. NEW & NOTEWORTHY Aging impairs contractile function of coronary arterioles and induces a shift of the vascular smooth muscle toward a proliferative, noncontractile phenotype. Late-life exercise training reverses contractile dysfunction of coronary arterioles and restores a young phenotype to the vascular smooth muscle.


Assuntos
Envelhecimento/fisiologia , Vasos Coronários/fisiologia , Microvasos/fisiologia , Músculo Liso Vascular/fisiologia , Condicionamento Físico Animal/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Animais , Masculino , Músculo Liso Vascular/citologia , Ratos Endogâmicos F344 , Vasoconstrição
14.
J Physiol ; 595(12): 3703-3719, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295341

RESUMO

KEY POINTS: In a rat model of ageing that is free of atherosclerosis or hypertension, E/A, a diagnostic measure of diastolic filling, decreases, and isovolumic relaxation time increases, indicating that both active and passive ventricular relaxation are impaired with advancing age. Resting coronary blood flow and coronary functional hyperaemia are reduced with age, and endothelium-dependent vasodilatation declines with age in coronary resistance arterioles. Exercise training reverses age-induced declines in diastolic and coronary microvascular function. Thus, microvascular dysfunction and inadequate coronary perfusion are likely mechanisms of diastolic dysfunction in aged rats. Exercise training, initiated at an advanced age, reverses age-related diastolic and microvascular dysfunction; these data suggest that late-life exercise training can be implemented to improve coronary perfusion and diastolic function in the elderly. ABSTRACT: The risk for diastolic dysfunction increases with advancing age. Regular exercise training ameliorates age-related diastolic dysfunction; however, the underlying mechanisms have not been identified. We investigated whether (1) microvascular dysfunction contributes to the development of age-related diastolic dysfunction, and (2) initiation of late-life exercise training reverses age-related diastolic and microvascular dysfunction. Young and old rats underwent 10 weeks of exercise training or remained as sedentary, cage-controls. Isovolumic relaxation time (IVRT), early diastolic filling (E/A), myocardial performance index (MPI) and aortic stiffness (pulse wave velocity; PWV) were evaluated before and after exercise training or cage confinement. Coronary blood flow and vasodilatory responses of coronary arterioles were evaluated in all groups at the end of training. In aged sedentary rats, compared to young sedentary rats, a 42% increase in IVRT, a 64% decrease in E/A, and increased aortic stiffness (PWV: 6.36 ± 0.47 vs.4.89 ± 0.41, OSED vs. YSED, P < 0.05) was accompanied by impaired coronary blood flow at rest and during exercise. Endothelium-dependent vasodilatation was impaired in coronary arterioles from aged rats (maximal relaxation to bradykinin: 56.4 ± 5.1% vs. 75.3 ± 5.2%, OSED vs. YSED, P < 0.05). After exercise training, IVRT, a measure of active ventricular relaxation, did not differ between old and young rats. In old rats, exercise training reversed the reduction in E/A, reduced aortic stiffness, and eliminated impairment of coronary blood flow responses and endothelium-dependent vasodilatation. Thus, age-related diastolic and microvascular dysfunction are reversed by late-life exercise training. The restorative effect of exercise training on coronary microvascular function may result from improved endothelial function.


Assuntos
Vasos Coronários/fisiologia , Diástole/fisiologia , Microvasos/fisiologia , Condicionamento Físico Animal/fisiologia , Disfunção Ventricular/fisiopatologia , Animais , Endotélio Vascular/fisiologia , Masculino , Análise de Onda de Pulso/métodos , Ratos , Ratos Endogâmicos F344 , Fluxo Sanguíneo Regional/fisiologia , Rigidez Vascular/fisiologia , Vasodilatação/fisiologia
15.
Sci Rep ; 6: 29901, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27467019

RESUMO

As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.


Assuntos
Astronautas , Doenças Cardiovasculares/mortalidade , Radiação Cósmica/efeitos adversos , Lesões por Radiação/mortalidade , Adulto , Doenças Cardiovasculares/fisiopatologia , Endotélio Vascular/fisiopatologia , Endotélio Vascular/efeitos da radiação , Feminino , Humanos , Masculino , Lua , Exposição Ocupacional/efeitos adversos , Doses de Radiação , Lesões por Radiação/fisiopatologia , Proteção Radiológica , Voo Espacial
16.
Radiat Res ; 185(3): 257-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26930379

RESUMO

Weightlessness during spaceflight leads to functional changes in resistance arteries and loss of cancellous bone, which may be potentiated by radiation exposure. The purpose of this study was to assess the effects of hindlimb unloading (HU) and total-body irradiation (TBI) on the vasomotor responses of skeletal muscle arteries. Male C57BL/6 mice were assigned to control, HU (13-16 days), TBI (1 Gy (56)Fe, 600 MeV, 10 cGy/min) and HU-TBI groups. Gastrocnemius muscle feed arteries were isolated for in vitro study. Endothelium-dependent (acetylcholine) and -independent (Dea-NONOate) vasodilator and vasoconstrictor (KCl, phenylephrine and myogenic) responses were evaluated. Arterial endothelial nitric oxide synthase (eNOS), superoxide dismutase-1 (SOD-1) and xanthine oxidase (XO) protein content and tibial cancellous bone microarchitecture were quantified. Endothelium-dependent and -independent vasodilator responses were impaired in all groups relative to control, and acetylcholine-induced vasodilation was lower in the HU-TBI group relative to that in the HU and TBI groups. Reductions in endothelium-dependent vasodilation correlated with a lower cancellous bone volume fraction. Nitric oxide synthase inhibition abolished all group differences in endothelium-dependent vasodilation. HU and HU-TBI resulted in decreases in eNOS protein levels, while TBI and HU-TBI produced lower SOD-1 and higher XO protein content. Vasoconstrictor responses were not altered. Reductions in NO bioavailability (eNOS), lower anti-oxidant capacity (SOD-1) and higher pro-oxidant capacity (XO) may contribute to the deficits in NOS signaling in skeletal muscle resistance arteries. These findings suggest that the combination of insults experienced in spaceflight leads to impairment of vasodilator function in resistance arteries that is mediated through deficits in NOS signaling.


Assuntos
Músculo Esquelético/efeitos da radiação , Exposição à Radiação , Vasodilatação/efeitos da radiação , Sistema Vasomotor/efeitos da radiação , Animais , Artérias/metabolismo , Artérias/efeitos da radiação , Membro Posterior/metabolismo , Membro Posterior/efeitos da radiação , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Voo Espacial , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Vasodilatadores/administração & dosagem , Sistema Vasomotor/metabolismo , Irradiação Corporal Total , Xantina Oxidase/metabolismo
17.
Bone ; 83: 156-161, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26545335

RESUMO

Spaceflight-induced remodeling of the skull is characterized by greater bone volume, mineral density, and mineral content. To further investigate the effects of spaceflight on other non-weight bearing bones of the head, as well as to gain insight into potential factors mediating the remodeling of the skull, the purpose of the present study was to determine the effects of spaceflight on mandibular bone properties. Female C57BL/6 mice were flown 15d on the STS-131 Space Shuttle mission (n=8) and 13d on the STS-135 mission (n=5) or remained as ground controls (GC). Upon landing, mandibles were collected and analyzed via micro-computed tomography for tissue mineralization, bone volume (BV/TV), and distance from the cemento-enamel junction to the alveolar crest (CEJ-AC). Mandibular mineralization was not different between spaceflight (SF) and GC mice for either the STS-131 or STS-135 missions. Mandibular BV/TV (combined cortical and trabecular bone) was lower in mandibles from SF mice on the STS-131 mission (80.7±0.8%) relative to that of GC (n=8) animals (84.2±1.2%), whereas BV/TV from STS-135 mice was not different from GC animals (n=7). The CEJ-AC distance was shorter in mandibles from STS-131 mice (0.217±0.004mm) compared to GC animals (0.283±0.009mm), indicating an anabolic (or anti-catabolic) effect of spaceflight, while CEJ-AC distance was similar between STS-135 and GC mice. These findings demonstrate that mandibular bones undergo skeletal changes during spaceflight and are susceptible to the effects of weightlessness. However, adaptation of the mandible to spaceflight is dissimilar to that of the cranium, at least in terms of changes in BV/TV.


Assuntos
Mandíbula/fisiologia , Voo Espacial , Animais , Peso Corporal , Calcificação Fisiológica , Feminino , Cabeça , Mandíbula/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Suporte de Carga , Microtomografia por Raio-X
18.
J Appl Physiol (1985) ; 120(2): 97-106, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472865

RESUMO

Spaceflight has profound effects on vascular function as a result of weightlessness that may be further compounded by radiation exposure. The purpose of the present study was to assess the individual and combined effects of hindlimb unloading (HU) and radiation (Rad) on vasodilator responses in the skeletal muscle vasculature. Adult male C57BL/6J mice were randomized to one of four groups: control (Con), HU (tail suspension for 15 days), Rad (200 cGy of (137)Cs), and HU-Rad (15-day tail suspension and 200 cGy of (137)Cs). Endothelium-dependent vasodilation of gastrocnemius feed arteries was assessed in vitro using acetylcholine (ACh, 10(-9)-10(-4) M) and inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX). Endothelium-independent vasodilation was assessed using Dea-NONOate (10(-9)-10(-4) M). Endothelium-dependent and -independent vasodilator responses were impaired relative to Con responses in all treatment groups; however, there was no further impairment from the combination of treatments (HU-Rad) relative to that in the HU and Rad groups. The NOS-mediated contribution to endothelium-dependent vasodilation was depressed with HU and Rad. This impairment in NOS signaling may have been partially compensated for by an enhancement of PGI2-mediated dilation. Changes in endothelium-dependent vasodilation were also associated with decrements in trabecular bone volume in the proximal tibia metaphysis. These data demonstrate that the simulated space environment (i.e., radiation exposure and unloading of muscle and bone) significantly impairs skeletal muscle artery vasodilation, mediated through endothelium-dependent reductions in NOS signaling and decrements in vascular smooth muscle cell responsiveness to NO.


Assuntos
Artérias/fisiologia , Osso e Ossos/fisiologia , Membro Posterior/fisiologia , Músculo Esquelético/fisiologia , Vasodilatação/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Epoprostenol/farmacologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Elevação dos Membros Posteriores/métodos , Hidrazinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Radiação Ionizante , Vasodilatadores/farmacologia , Ausência de Peso
20.
J Cereb Blood Flow Metab ; 35(12): 1950-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26104291

RESUMO

Overpressure blast-wave induced brain injury (OBI) leads to progressive pathophysiologic changes resulting in a reduction in brain blood flow, blood brain barrier breakdown, edema, and cerebral ischemia. The aim of this study was to evaluate cerebral vascular function after single and repeated OBI. Male Sprague-Dawley rats were divided into three groups: Control (Naive), single OBI (30 psi peak pressure, 1 to 2 msec duration), and repeated (days 1, 4, and 7) OBI (r-OBI). Rats were killed 24 hours after injury and the basilar artery was isolated, cannulated, and pressurized (90 cm H2O). Vascular responses to potassium chloride (KCl) (30 to 100 mmol/L), endothelin-1 (10(-12) to 10(-7) mol/L), acetylcholine (ACh) (10(-10) to 10(-4) mol/L) and diethylamine-NONO-ate (DEA-NONO-ate) (10(-10) to 10(-4) mol/L) were evaluated. The OBI resulted in an increase in the contractile responses to endothelin and a decrease in the relaxant responses to ACh in both single and r-OBI groups. However, impaired DEA-NONO-ate-induced vasodilation and increased wall thickness to lumen ratio were observed only in the r-OBI group. The endothelin-1 type A (ET(A)) receptor and endothelial nitric oxide synthase (eNOS) immunoreactivity were significantly enhanced by OBI. These findings indicate that both single and r-OBI impairs cerebral vascular endothelium-dependent dilation, potentially a consequence of endothelial dysfunction and/or vascular remodelling in basilar arteries after OBI.


Assuntos
Artéria Basilar/patologia , Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Animais , Capilares/patologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Pressão , Ratos , Ratos Sprague-Dawley , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina A/metabolismo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA