Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(25): 36965-36975, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873467

RESUMO

We present a study of the fundamental limit of fiber links using dedicated link architecture. We use an experimental arrangement that enables us to detect the forward and backward propagation noise independently and simultaneously in optical fiber and where the optical phase evolution is expected to be driven by the only contribution of the reference arms of the Michelson interferometer ensemble. In this article, we demonstrate indeed the high correlation between the optical phase evolution and the temperature variation of the interferometer ensemble, leading to a frequency offset of (4.4±2.3)×10-21. Using a simple temperature model and a Bayesian analysis to evaluate the model parameters, we show that the temperature effect can be compensated with post-processing, removing the frequency offset down to (0.5±2.0)×10-21. The residual slope of the optical phase evolution over 33 days is 350 yoctosecond/s. Using a global temperature parameter, we divide these 33 days dataset in four subsets and analyse their uncertainties. We show that they are self-consistent when the temperature is taken into account. This provides an alternative method to evaluate the accuracy of a fiber link, especially when the dataset includes large dead times. The result is finally interpreted as a test of the reciprocity of the propagation delay in an optical fiber. This unprecedented transfer capability could enable the comparisons of future optical clocks with expected performance at 10-20 level and open new possibilities for stringent tests of special and general relativity.

2.
Phys Rev Lett ; 123(23): 231102, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868496

RESUMO

We use data from the T-SAGE instrument on board the MICROSCOPE space mission to search for Lorentz violation in matter-gravity couplings as described by the Lorentz violating standard model extension (SME) coefficients (a[over ¯]_{eff})_{µ}^{w}, where (µ=T, X, Y, Z) and (w=e, p, n) for the electron, proton, and neutron. One of the phenomenological consequences of a nonzero value of those coefficients is that test bodies of different composition fall differently in an external gravitational field. This is similar to "standard" tests of the universality of free fall, but with a specific signature that depends on the orbital velocity and rotation of Earth. We analyze data from five measurement sessions of MICROSCOPE spread over a year finding no evidence for such a signature, but setting constraints on linear combinations of the SME coefficients that improve on best previous results by 1 to 2 orders of magnitude. Additionally, our independent linear combinations are different from previous ones, which increases the diversity of available constraints, paving the way towards a full decorrelation of the individual coefficients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA