Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Patient Exp ; 10: 23743735231151554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741822

RESUMO

Patient-centric drug development is crucial to creating treatments that address unmet patient needs but is often ignored. The COPD Foundation's COPD360Net® includes a multistakeholder approach for operationalizing patient-centric development of treatments where patients, caregivers, scientists, and clinicians review opportunities based on scientific merit, potential to address an unmet need, and feasibility of adoption. COPD360Net deploys large-scale online community surveys to review profiles of potential therapies based on those criteria. This approach was implemented to inform the development of an intranasal spray to prevent viral respiratory infections (VRIs), a major cause of exacerbations in people with chronic lung diseases. Insights included: Of the 376 respondents with COPD surveyed, frequent exacerbators reported strong interest in a new type of antiviral nasal spray to prevent VRI.Patient survey and advisory committee insights demonstrated that a pan antiviral nasal spray has potential high value to both clinicians and patients and informed the COPD360Net decision to partner on its development.Including patient perspectives from the outset can be conducted efficiently by mobilizing an engaged online patient community.

2.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561017

RESUMO

The impact of respiratory virus infections on global health is felt not just during a pandemic, but endemic seasonal infections pose an equal and ongoing risk of severe disease. Moreover, vaccines and antiviral drugs are not always effective or available for many respiratory viruses. We investigated how induction of effective and appropriate antigen-independent innate immunity in the upper airways can prevent the spread of respiratory virus infection to the vulnerable lower airways. Activation of TLR2, when restricted to the nasal turbinates, resulted in prompt induction of innate immune-driven antiviral responses through action of cytokines, chemokines, and cellular activity in the upper but not the lower airways. We have defined how nasal epithelial cells and recruitment of macrophages work in concert and play pivotal roles to limit progression of influenza virus to the lungs and sustain protection for up to 7 days. These results reveal underlying mechanisms of how control of viral infection in the upper airways can occur and support the implementation of strategies that can activate TLR2 in nasal passages to provide rapid protection, especially for at-risk populations, against severe respiratory infection when vaccines and antiviral drugs are not always effective or available.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Influenza Humana , Lipopeptídeos/farmacologia , Pulmão , Infecções Respiratórias , Receptor 2 Toll-Like/metabolismo , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Vírus da Influenza A , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Lipopeptídeos/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/virologia , Receptor 2 Toll-Like/agonistas
3.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33303547

RESUMO

BACKGROUND: We assessed whether Toll-like receptor (TLR)2 activation boosts the innate immune response to rhinovirus infection, as a treatment strategy for virus-induced respiratory diseases. METHODS: We employed treatment with a novel TLR2 agonist (INNA-X) prior to rhinovirus infection in mice, and INNA-X treatment in differentiated human bronchial epithelial cells derived from asthmatic-donors. We assessed viral load, immune cell recruitment, cytokines, type I and III interferon (IFN) production, as well as the lung tissue and epithelial cell immune transcriptome. RESULTS: We show, in vivo, that a single INNA-X treatment induced innate immune priming characterised by low-level IFN-λ, Fas ligand, chemokine expression and airway lymphocyte recruitment. Treatment 7 days before infection significantly reduced lung viral load, increased IFN-ß/λ expression and inhibited neutrophilic inflammation. Corticosteroid treatment enhanced the anti-inflammatory effects of INNA-X. Treatment 1 day before infection increased expression of 190 lung tissue immune genes. This tissue gene expression signature was absent with INNA-X treatment 7 days before infection, suggesting an alternate mechanism, potentially via establishment of immune cell-mediated mucosal innate immunity. In vitro, INNA-X treatment induced a priming response defined by upregulated IFN-λ, chemokine and anti-microbial gene expression that preceded an accelerated response to infection enriched for nuclear factor (NF)-κB-regulated genes and reduced viral loads, even in epithelial cells derived from asthmatic donors with intrinsic delayed anti-viral immune response. CONCLUSION: Airway epithelial cell TLR2 activation induces prolonged innate immune priming, defined by early NF-κB activation, IFN-λ expression and lymphocyte recruitment. This response enhanced anti-viral innate immunity and reduced virus-induced airway inflammation.


Assuntos
Antivirais , Receptor 2 Toll-Like , Animais , Células Epiteliais , Humanos , Imunidade Inata , Pulmão , Camundongos
4.
EBioMedicine ; 63: 103153, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33279857

RESUMO

BACKGROUND: The novel human coronavirus SARS-CoV-2 is a major ongoing global threat with huge economic burden. Like all respiratory viruses, SARS-CoV-2 initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. METHODS: SARS-CoV-2 Victoria/01/2020 was passaged in Vero/hSLAM cells and virus titre determined by plaque assay. Challenge virus was delivered by intranasal instillation to female ferrets at 5.0 × 106 pfu/ml. Treatment groups received intranasal INNA-051, developed by Ena Respiratory. SARS-CoV-2 RNA was detected using the 2019-nCoV CDC RUO Kit and QuantStudio™ 7 Flex Real-Time PCR System. Histopathological analysis was performed using cut tissues stained with haematoxylin and eosin (H&E). FINDINGS: We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. After 5 days post-exposure to SARS-CoV-2, INNA-051 significantly reduced virus in throat swabs (p=<0.0001) by up to a 24 fold (96% reduction) and in nasal wash (p=0.0107) up to a 15 fold (93% reduction) in comparison to untreated animals. INTERPRETATION: The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT, to reduce SARS-CoV-2 transmission and provide protection against COVID-19. FUNDING: This work was funded by Ena Respiratory, Melbourne, Australia.


Assuntos
Lipopeptídeos/administração & dosagem , Sistema Respiratório/virologia , SARS-CoV-2/patogenicidade , Receptor 2 Toll-Like/agonistas , Receptor 6 Toll-Like/agonistas , Eliminação de Partículas Virais , Administração Intranasal , Animais , COVID-19/patologia , Modelos Animais de Doenças , Feminino , Furões , Imunidade Inata , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Cavidade Nasal/patologia , Cavidade Nasal/virologia , Faringe/patologia , Faringe/virologia , RNA Viral/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sistema Respiratório/patologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Carga Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
5.
Hum Gene Ther ; 13(7): 803-13, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11975847

RESUMO

Prolonged exposure of human hematopoietic stem cells (HSC) to growth factors for efficient transduction by murine oncoretroviral vectors has major detrimental effects on repopulating activity. In this study, we have used a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped human immunodeficiency virus type 1 (HIV-1) lentiviral-based vector system to transduce cord blood (CB) CD34+ cells over a limited time period (< or =24 hours). Under these conditions, significant gene marking was observed in engrafted human lymphoid, myeloid, and progenitor cells in all transplanted Severe Combined Immunodeficient (SCID) mice. To enhance the level of gene expression in hematopoietic cells, we also generated a series of lentiviral vectors incorporating the spleen focus forming virus (SFFV) long terminal repeat (LTR) sequences, and the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). By including the central polypurine tract (cPPT) sequence of HIV-1 we were then able to achieve high levels of transduction (over 80%) and gene expression in vivo after a single exposure to viral supernatant. These results demonstrate that lentiviral vectors are highly effective for gene transfer to human HSC, and that SFFV regulatory sequences can be successfully incorporated to enhance the long-term expression of a transgene in primary human hematopoietic cells in vivo.


Assuntos
Elementos Facilitadores Genéticos , Técnicas de Transferência de Genes , Vetores Genéticos , HIV-1/genética , Lentivirus/genética , Glicoproteínas de Membrana , Animais , Antígenos CD34/biossíntese , Células Cultivadas , Citocinas/biossíntese , Sangue Fetal/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde , Células-Tronco Hematopoéticas/metabolismo , Vírus da Hepatite B da Marmota/genética , Humanos , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos SCID , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Purinas/química , Vírus Formadores de Foco no Baço/genética , Sequências Repetidas Terminais , Transdução Genética , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA