Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-37609281

RESUMO

Single cell sequencing is useful for resolving complex systems into their composite cell types and computationally mining them for unique features that are masked in pooled sequencing. However, while commercial instruments have made single cell analysis widespread for mammalian cells, analogous tools for microbes are limited. Here, we present EASi-seq (Easily Accessible Single microbe sequencing). By adapting the single cell workflow of the commercial Mission Bio Tapestri instrument, this method allows for efficient sequencing of individual microbes' genomes. EASi-seq allows thousands of microbes to be sequenced per run and, as we show, can generate detailed atlases of human and environmental microbiomes. The ability to capture large shotgun genome datasets from thousands of single microbes provides new opportunities in discovering and analyzing species subpopulations. To facilitate this, we develop a companion bioinformatic pipeline that clusters microbes by similarity, improving whole genome assembly, strain identification, taxonomic classification, and gene annotation. In addition, we demonstrate integration of metagenomic contigs with the EASi-seq datasets to reduce capture bias and increase coverage. Overall, EASi-seq enables high quality single cell genomic data for microbiome samples using an accessible workflow that can be run on a commercially available platform.

2.
Res Sq ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37790580

RESUMO

Single cell sequencing is useful for resolving complex systems into their composite cell types and computationally mining them for unique features that are masked in pooled sequencing. However, while commercial instruments have made single cell analysis widespread for mammalian cells, analogous tools for microbes are limited. Here, we present EASi-seq (Easily Accessible Single microbe sequencing). By adapting the single cell workflow of the commercial Mission Bio Tapestri instrument, this method allows for efficient sequencing of individual microbes' genomes. EASi-seq allows thousands of microbes to be sequenced per run and, as we show, can generate detailed atlases of human and environmental microbiomes. The ability to capture large shotgun genome datasets from thousands of single microbes provides new opportunities in discovering and analyzing species subpopulations. To facilitate this, we develop a companion bioinformatic pipeline that clusters microbes by similarity, improving whole genome assembly, strain identification, taxonomic classification, and gene annotation. In addition, we demonstrate integration of metagenomic contigs with the EASi-seq datasets to reduce capture bias and increase coverage. Overall, EASi-seq enables high quality single cell genomic data for microbiome samples using an accessible workflow that can be run on a commercially available platform.

3.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33951726

RESUMO

The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro-B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro- to pre-B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1's critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.


Assuntos
Agamaglobulinemia/genética , Cromatina/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Adolescente , Adulto , Linfócitos B/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Criança , Pré-Escolar , Células Dendríticas/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lactente , Linfopoese/genética , Masculino , Mutação/genética , Células Precursoras de Linfócitos B/fisiologia , Células-Tronco/fisiologia , Adulto Jovem
4.
Nat Commun ; 12(1): 1583, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707421

RESUMO

Studies of acute myeloid leukemia rely on DNA sequencing and immunophenotyping by flow cytometry as primary tools for disease characterization. However, leukemia tumor heterogeneity complicates integration of DNA variants and immunophenotypes from separate measurements. Here we introduce DAb-seq, a technology for simultaneous capture of DNA genotype and cell surface phenotype from single cells at high throughput, enabling direct profiling of proteogenomic states in tens of thousands of cells. To demonstrate the approach, we analyze the disease of three patients with leukemia over multiple treatment timepoints and disease recurrences. We observe complex genotype-phenotype dynamics that illustrate the subtlety of the disease process and the degree of incongruity between blast cell genotype and phenotype in different clinical scenarios. Our results highlight the importance of combined single-cell DNA and protein measurements to fully characterize the heterogeneity of leukemia.


Assuntos
DNA/genética , Estudos de Associação Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Análise de Célula Única/métodos , Sequência de Bases , Linhagem Celular Tumoral , Técnicas de Genotipagem , Humanos , Imunofenotipagem , Células Jurkat , Análise de Sequência de DNA , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
5.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33250685

RESUMO

Injectable colloids that self-assemble into three-dimensional networks are promising materials for applications in regenerative engineering, as they create open systems for cellular infiltration, interaction, and activation. However, most injectable colloids have spherical morphologies, which lack the high material-biology contact areas afforded by higher aspect ratio materials. To address this need, injectable high aspect ratio particles (HARPs) were developed that form three-dimensional networks to enhance scaffold assembly dynamics and cellular interactions. HARPs were functionalized for tunable surface charge through layer-by-layer electrostatic assembly. Positively charged Chitosan-HARPs had improved particle suspension dynamics when compared to spherical particles or negatively charged HARPs. Chit-HARPs were used to improve the suspension dynamics and viability of MIN6 cells in three-dimensional networks. When combined with negatively charged gelatin microsphere (GelMS) porogens, Chit-HARPs reduced GelMS sedimentation and increased overall network suspension, due to a combination of HARP network formation and electrostatic interactions. Lastly, HARPs were functionalized with fibroblast growth factor 2 (FGF2) to highlight their use for growth factor delivery. FGF2-HARPs increased fibroblast proliferation through a combination of 3D scaffold assembly and growth factor delivery. Taken together, these studies demonstrate the development and diverse uses of high aspect ratio particles as tunable injectable scaffolds for applications in regenerative engineering.

6.
Nature ; 587(7834): 477-482, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116311

RESUMO

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Assuntos
Células Clonais/patologia , Análise Mutacional de DNA , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Análise de Célula Única , Separação Celular , Células Clonais/metabolismo , Humanos , Imunofenotipagem
7.
Nat Commun ; 11(1): 4803, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968068

RESUMO

Meningiomas are the most common primary intracranial tumors, but the molecular drivers of meningioma tumorigenesis are poorly understood. We hypothesized that investigating intratumor heterogeneity in meningiomas would elucidate biologic drivers and reveal new targets for molecular therapy. To test this hypothesis, here we perform multiplatform molecular profiling of 86 spatially-distinct samples from 13 human meningiomas. Our data reveal that regional alterations in chromosome structure underlie clonal transcriptomic, epigenomic, and histopathologic signatures in meningioma. Stereotactic co-registration of sample coordinates to preoperative magnetic resonance images further suggest that high apparent diffusion coefficient (ADC) distinguishes meningioma regions with proliferating cells enriched for developmental gene expression programs. To understand the function of these genes in meningioma, we develop a human cerebral organoid model of meningioma and validate the high ADC marker genes CDH2 and PTPRZ1 as potential targets for meningioma therapy using live imaging, single cell RNA sequencing, CRISPR interference, and pharmacology.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Idoso , Antígenos CD/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Caderinas/genética , Imagem de Difusão por Ressonância Magnética/métodos , Epigenômica , Feminino , Marcadores Genéticos , Genômica , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transcriptoma
8.
Cell Rep ; 30(5): 1300-1309.e5, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023450

RESUMO

Ependymomas exist within distinct genetic subgroups, but the molecular diversity within individual ependymomas is unknown. We perform multiplatform molecular profiling of 6 spatially distinct samples from an ependymoma with C11orf95-RELA fusion. DNA methylation and RNA sequencing distinguish clusters of samples according to neuronal development gene expression programs that could also be delineated by differences in magnetic resonance blood perfusion. Exome sequencing and phylogenetic analysis reveal epigenomic intratumor heterogeneity and suggest that chromosomal structural alterations may precede accumulation of single-nucleotide variants during ependymoma tumorigenesis. In sum, these findings shed light on the oncogenesis and intratumor heterogeneity of ependymoma.


Assuntos
Ependimoma/genética , Epigenômica , Perfilação da Expressão Gênica , Heterogeneidade Genética , Adulto , Diferenciação Celular/genética , Linhagem Celular Tumoral , Aberrações Cromossômicas , Ependimoma/diagnóstico por imagem , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Mutação/genética , Neurônios/patologia , Filogenia , Proteínas/metabolismo , Fator de Transcrição RelA/metabolismo
9.
Nucleic Acids Res ; 48(8): e48, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32095820

RESUMO

Microbial biosynthetic gene clusters are a valuable source of bioactive molecules. However, because they typically represent a small fraction of genomic material in most metagenomic samples, it remains challenging to deeply sequence them. We present an approach to isolate and sequence gene clusters in metagenomic samples using microfluidic automated plasmid library enrichment. Our approach provides deep coverage of the target gene cluster, facilitating reassembly. We demonstrate the approach by isolating and sequencing type I polyketide synthase gene clusters from an Antarctic soil metagenome. Our method promotes the discovery of functional-related genes and biosynthetic pathways.


Assuntos
Vias Biossintéticas/genética , Metagenômica/métodos , Técnicas Analíticas Microfluídicas , Biblioteca Genômica , Dispositivos Lab-On-A-Chip , Plasmídeos/genética , Policetídeo Sintases/genética , Microbiologia do Solo , Fluxo de Trabalho
10.
Sci Rep ; 9(1): 9936, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289365

RESUMO

In vitro models of the small intestine are crucial tools for the prediction of drug absorption. The Caco-2 monolayer transwell model has been widely employed to assess drug absorption across the intestine. However, it is now well-established that 3D in vitro models capture tissue-specific architecture and interactions with the extracellular matrix and therefore better recapitulate the complex in vivo environment. However, these models need to be characterized for barrier properties and changes in gene expression and transporter function. Here, we report that geometrically controlled self-assembling multicellular intestinal Caco-2 spheroids cultured using Sacrificial Micromolding display reproducible intestinal features and functions that are more representative of the in vivo small intestine than the widely used 2D transwell model. We show that Caco-2 cell maturation and differentiation into the intestinal epithelial phenotype occur faster in spheroids and that they are viable for a longer period of time. Finally, we were able to invert the polarity of the spheroids by culturing them around Matrigel beads allowing superficial access to the apical membrane and making the model more physiological. This robust and reproducible in vitro intestinal model could serve as a valuable system to expedite drug screening as well as to study intestinal transporter function.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Modelos Biológicos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Diferenciação Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Mucosa Intestinal/patologia , Esferoides Celulares/patologia , Células Tumorais Cultivadas
11.
Methods Cell Biol ; 148: 119-131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473066

RESUMO

Analysis of liquid biopsy samples is a promising diagnostic intervention for noninvasive detection and monitoring of cancer genotypes. However, current methods used to assess mutation status are either costly, in the case of next-generation sequencing-based assays, or lacking in sensitivity, in the case of bulk quantitative PCR measurements. Digital droplet PCR (ddPCR) is at once a sensitive and low-cost method for detecting rare cancer mutations and measuring their variant allele frequency. In this chapter, we describe a method for conducting ddPCR assays without microfluidics in a process called "particle-templated emulsification" (PTE). Using hydrogel particles and a standard benchtop vortexer to rapidly emulsify large volumes, the method forgoes the specialized instrumentation required for conventional ddPCR assays and is capable of high experimental throughput. To assess the quantitative performance of the method, we apply PTE ddPCR to analysis of variant allele frequency in EGFR, a commonly mutated gene in lung adenocarcinomas.


Assuntos
Ácidos Nucleicos Livres/genética , Frequência do Gene , Reação em Cadeia da Polimerase/métodos , Resinas Acrílicas/química , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética
12.
J Vis Exp ; (135)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29889211

RESUMO

Sequencing technologies have undergone a paradigm shift from bulk to single-cell resolution in response to an evolving understanding of the role of cellular heterogeneity in biological systems. However, single-cell sequencing of large populations has been hampered by limitations in processing genomes for sequencing. In this paper, we describe a method for single-cell genome sequencing (SiC-seq) which uses droplet microfluidics to isolate, amplify, and barcode the genomes of single cells. Cell encapsulation in microgels allows the compartmentalized purification and tagmentation of DNA, while a microfluidic merger efficiently pairs each genome with a unique single-cell oligonucleotide barcode, allowing >50,000 single cells to be sequenced per run. The sequencing data is demultiplexed by barcode, generating groups of reads originating from single cells. As a high-throughput and low-bias method of single-cell sequencing, SiC-seq will enable a broader range of genomic studies targeted at diverse cell populations.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microfluídica/métodos , Humanos
13.
Nat Biotechnol ; 35(7): 640-646, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28553940

RESUMO

The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.


Assuntos
Mapeamento Cromossômico/instrumentação , Código de Barras de DNA Taxonômico/instrumentação , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Dispositivos Lab-On-A-Chip , Análise Serial de Tecidos/instrumentação , Separação Celular/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA