RESUMO
A network of shared intermediates/components and/or common molecular outputs in biotic and abiotic stress signaling has long been known, but the possibility of effective influence between differently triggered stresses (co-protection) is less studied. Recent observations show that wounding induces transient protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles, locally and systemically. The contribution of ethylene (ET) in basal but also in wound-induced resistance to each pathogen, although dispensable, is demonstrated to be positive (Botrytis cinerea, Phytophthora capsici) or negative (Fusarium oxysporum, Pseudomonas syringae pv. tomato). Furthermore, the expression of several defense markers is influenced locally and/or systemically by wounding and ET, and might be part of that core of conserved molecular responses whereby an abiotic stress such as wounding imparts co-resistance to biotic stress. In this addendum, we speculate on some of the physiological responses to wounding that might contribute to the modulation of resistance in a more pathogen-specific manner.
RESUMO
Many reports point to the existence of a network of regulatory signalling occurring in plants during the interaction with micro-organisms (biotic stress) and abiotic stresses such as wounding. However, the focus is on shared intermediates/components and/or common molecular outputs in differently triggered signalling pathways, and not on the degree and modes of effective influence between abiotic and biotic stresses nor the range of true plant-pathogen interactions open to such influence. We report on local and systemic wound-induced protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles (Botrytis cinerea, Fusarium oxysporum f.sp. lycopersici, Phytophthora capsici and Pseudomonas syringae pv. tomato). The role of ethylene (ET) in the phenomenon and in the induction by wounding of several markers of defense was investigated by using the never-ripe tomato mutant plants impaired in ET perception. We showed that PINIIb, PR1b, PR5, PR7 and peroxidase (POD) are influenced locally and/or systemically by wounding and, with the exception of POD activity, by ET perception. We also demonstrated that ET, although not essential, is positively (B. cinerea, P. capsici) or negatively (F. oxysporum, P. syringae pv. tomato) involved not only in basal but also in wound-induced resistance to each pathogen.