Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 173537, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38802008

RESUMO

Phosphorus (P) is a critical nutrient for primary production in terrestrial and aquatic ecosystems. As P mineral reserves are finite and non-renewable, there is an increasing discussion on its sustainable utilization to safeguard food security for future generations. Understanding the spatial distribution of soil P is central in advancing effective phosphorus management and fostering sustainable agricultural practices. This study aims to digitally map the stocks of available P (AP) and total P (TP) in Brazil at a fine resolution (30 m). Using the Random Forest machine learning algorithm and a database of topsoil (0-20 cm) with 28,572 samples for AP and 3154 for TP, we predicted P stocks based on environmental covariates related to soil formation processes. By dividing Brazil into two sub-regions, representing areas with native coverage and anthropogenic ones, we built independent predictive models for each sub-region. Our results show that Brazil has a TP stock of 531 Tg and an AP stock of 17.4 Tg. The largest soil TP stocks are in the Atlantic Forest biome (73.8 g.m2), likely due to higher organic carbon stocks in this biome. The largest AP stocks were in the Caatinga biome (2.51 g.m2) because of younger soils with low P adsorption capacity. We also found that fertilizer use significantly increased AP stocks in agricultural areas compared to native ones. Our results indicated that AP stocks strongly influenced Brazil's agricultural production, with a correlation coefficient ranging from 0.20 for coffee crops to 0.46 for soybean. The maps generated in this study are expected to contribute to the sustainable use of P in agriculture and environmental systems.

2.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337928

RESUMO

Heat stress is an abiotic factor that affects the photosynthetic parameters of plants. In this study, we examined the photosynthetic mechanisms underlying the rapid response of tobacco plants to heat stress in a controlled environment. To evaluate transient heat stress conditions, changes in photochemical, carboxylative, and fluorescence efficiencies were measured using an infrared gas analyser (IRGA Licor 6800) coupled with chlorophyll a fluorescence measurements. Our findings indicated that significant disruptions in the photosynthetic machinery occurred at 45 °C for 6 h following transient heat treatment, as explained by 76.2% in the principal component analysis. The photosynthetic mechanism analysis revealed that the dark respiration rate (Rd and Rd*CO2) increased, indicating a reduced potential for carbon fixation during plant growth and development. When the light compensation point (LCP) increased as the light saturation point (LSP) decreased, this indicated potential damage to the photosystem membrane of the thylakoids. Other photosynthetic parameters, such as AMAX, VCMAX, JMAX, and ΦCO2, also decreased, compromising both photochemical and carboxylative efficiencies in the Calvin-Benson cycle. The energy dissipation mechanism, as indicated by the NPQ, qN, and thermal values, suggested that a photoprotective strategy may have been employed. However, the observed transitory damage was a result of disruption of the electron transport rate (ETR) between the PSII and PSI photosystems, which was initially caused by high temperatures. Our study highlights the impact of rapid temperature changes on plant physiology and the potential acclimatisation mechanisms under rapid heat stress. Future research should focus on exploring the adaptive mechanisms involved in distinguishing mutants to improve crop resilience against environmental stressors.

3.
Sci Rep ; 13(1): 14103, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644055

RESUMO

Food production is extremely dependent on the soil. Brazil plays an important role in the global food production chain. Although only 30% of the total Brazilian agricultural areas are used for crop and livestock, the full soil production potential needs to be evaluated due to the environmental and legal impossibility to expand agriculture to new areas. A novel approach to assess the productive potential of soils, called "SoilPP" and based on soil analysis (0-100 cm) - which express its pedological information - and machine learning is presented. Historical yields of sugarcane and soybeans were analyzed, allowing to identify where it is still possible to improve crop yields. The soybean yields were below the estimated SoilPP in 46% of Brazilian counties and could be improved by proper management practices. For sugarcane, 38% of areas can be improved. This technique allowed us to understand and map the food yield situation over large areas, which can support farmers, consultants, industries, policymakers, and world food security planning.

4.
Sci Rep ; 13(1): 10897, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407589

RESUMO

The pressure for food production has expanded agriculture frontiers worldwide, posing a threat to water resources. For instance, placing crop systems over hydromorphic soils (HS), have a direct impact on groundwater and influence the recharge of riverine ecosystems. Environmental regulations improved over the past decades, but it is difficult to detect and protect these soils. To overcome this issue, we applied a temporal remote sensing strategy to generate a synthetic soil image (SYSI) associated with random forest (RF) to map HS in an 735,953.8 km2 area in Brazil. HS presented different spectral patterns from other soils, allowing the detection by satellite sensors. Slope and SYSI contributed the most for the prediction model using RF with cross validation (accuracy of 0.92). The assessments showed that 14.5% of the study area represented HS, mostly located inside agricultural areas. Soybean and pasture areas had up to 14.9% while sugar cane had just 3%. Here we present an advanced remote sensing technique that may improve the identification of HS under agriculture and assist public policies for their conservation.

5.
Plants (Basel) ; 12(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37447089

RESUMO

Hyperspectral technology offers significant potential for non-invasive monitoring and prediction of morphological parameters in plants. In this study, UV-VIS-NIR-SWIR reflectance hyperspectral data were collected from Nicotiana tabacum L. plants using a spectroradiometer. These plants were grown under different light and gibberellic acid (GA3) concentrations. Through spectroscopy and multivariate analyses, key growth parameters, such as height, leaf area, energy yield, and biomass, were effectively evaluated based on the interaction of light with leaf structures. The shortwave infrared (SWIR) bands, specifically SWIR1 and SWIR2, showed the strongest correlations with these growth parameters. When classifying tobacco plants grown under different GA3 concentrations in greenhouses, artificial intelligence (AI) and machine learning (ML) algorithms were employed, achieving an average accuracy of over 99.1% using neural network (NN) and gradient boosting (GB) algorithms. Among the 34 tested vegetation indices, the photochemical reflectance index (PRI) demonstrated the strongest correlations with all evaluated plant phenotypes. Partial least squares regression (PLSR) models effectively predicted morphological attributes, with R2CV values ranging from 0.81 to 0.87 and RPDP values exceeding 2.09 for all parameters. Based on Pearson's coefficient XYZ interpolations and HVI algorithms, the NIR-SWIR band combination proved the most effective for predicting height and leaf area, while VIS-NIR was optimal for optimal energy yield, and VIS-VIS was best for predicting biomass. To further corroborate these findings, the SWIR bands for certain morphological characteristic wavelengths selected with s-PLS were most significant for SWIR1 and SWIR2, while i-PLS showed a more uniform distribution in VIS-NIR-SWIR bands. Therefore, SWIR hyperspectral bands provide valuable insights into developing alternative bands for remote sensing measurements to estimate plant morphological parameters. These findings underscore the potential of remote sensing technology for rapid, accurate, and non-invasive monitoring within stationary high-throughput phenotyping systems in greenhouses. These insights align with advancements in digital and precision technology, indicating a promising future for research and innovation in this field.

6.
Biology (Basel) ; 12(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37237516

RESUMO

The adjustments that occur during photosynthesis are correlated with morphological, biochemical, and photochemical changes during leaf development. Therefore, monitoring leaves, especially when pigment accumulation occurs, is crucial for monitoring organelles, cells, tissue, and whole-plant levels. However, accurately measuring these changes can be challenging. Thus, this study tests three hypotheses, whereby reflectance hyperspectroscopy and chlorophyll a fluorescence kinetics analyses can improve our understanding of the photosynthetic process in Codiaeum variegatum (L.) A. Juss, a plant with variegated leaves and different pigments. The analyses include morphological and pigment profiling, hyperspectral data, chlorophyll a fluorescence curves, and multivariate analyses using 23 JIP test parameters and 34 different vegetation indexes. The results show that photochemical reflectance index (PRI) is a useful vegetation index (VI) for monitoring biochemical and photochemical changes in leaves, as it strongly correlates with chlorophyll and nonphotochemical dissipation (Kn) parameters in chloroplasts. In addition, some vegetation indexes, such as the pigment-specific simple ratio (PSSRc), anthocyanin reflectance index (ARI1), ratio analysis of reflectance spectra (RARS), and structurally insensitive pigment index (SIPI), are highly correlated with morphological parameters and pigment levels, while PRI, moisture stress index (MSI), normalized difference photosynthetic (PVR), fluorescence ratio (FR), and normalized difference vegetation index (NDVI) are associated with photochemical components of photosynthesis. Combined with the JIP test analysis, our results showed that decreased damage to energy transfer in the electron transport chain is correlated with the accumulation of carotenoids, anthocyanins, flavonoids, and phenolic compounds in the leaves. Phenomenological energy flux modelling shows the highest changes in the photosynthetic apparatus based on PRI and SIPI when analyzed with Pearson's correlation, the hyperspectral vegetation index (HVI) algorithm, and the partial least squares (PLS) to select the most responsive wavelengths. These findings are significant for monitoring nonuniform leaves, particularly when leaves display high variation in pigment profiling in variegated and colorful leaves. This is the first study on the rapid and precise detection of morphological, biochemical, and photochemical changes combined with vegetation indexes for different optical spectroscopy techniques.

7.
Sci Total Environ ; 882: 163572, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37084908

RESUMO

Soil available water capacity (AWC) is a key function for human survival and well-being. However, its direct measurement is laborious and spatial interpretation is complex. Digital soil mapping (DSM) techniques emerge as an alternative to spatial modeling of soil properties. DSM techniques commonly apply machine learning (ML) models, with a high level of complexity. In this context, we aimed to perform a digital mapping of soil AWC and interpret the results of the Random Forest (RF) algorithm and, in a case study, to show that digital AWC maps can support agricultural planning in response to the local effects of climate change. To do so, we divided this research into two approaches: In the first approach, we showed a DSM using 1857 sample points in a southeastern region of Brazil with laboratory-determined soil attributes, together with a pedotransfer function (PTF), remote sensing and DSM techniques. In the second approach, the constructed AWC digital soil map and weather station data were used to calculate climatological soil water balances for the periods between 1917-1946 and 1991-2020. The result showed the selection of covariates using Shapley values as a criterion contributed to the parsimony of the model, obtaining goodness-of-fit metrics of R2 0.72, RMSE 16.72 mm m-1, CCC 0.83, and Bias of 0.53 over the validation set. The highest contributing covariates for soil AWC prediction were the Landsat multitemporal images with bare soil pixels, mean diurnal, and annual temperature range. Under the current climate conditions, soil available water content (AW) increased during the dry period (April to August). May had the highest increase in AW (∼17 mm m-1) and decrease in September (∼14 mm m-1). The used methodology provides support for AWC modeling at 30 m resolution, as well as insight into the adaptation of crop growth periods to the effects of climate change.

8.
Plants (Basel) ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987021

RESUMO

In this study, we investigated the use of artificial intelligence algorithms (AIAs) in combination with VIS-NIR-SWIR hyperspectroscopy for the classification of eleven lettuce plant varieties. For this purpose, a spectroradiometer was utilized to collect hyperspectral data in the VIS-NIR-SWIR range, and 17 AIAs were applied to classify lettuce plants. The results showed that the highest accuracy and precision were achieved using the full hyperspectral curves or the specific spectral ranges of 400-700 nm, 700-1300 nm, and 1300-2400 nm. Four models, AdB, CN2, G-Boo, and NN, demonstrated exceptional R2 and ROC values, exceeding 0.99, when compared between all models and confirming the hypothesis and highlighting the potential of AIAs and hyperspectral fingerprints for efficient, precise classification and pigment phenotyping in agriculture. The findings of this study have important implications for the development of efficient methods for phenotyping and classification in agriculture and the potential of AIAs in combination with hyperspectral technology. To advance our understanding of the capabilities of hyperspectroscopy and AIs in precision agriculture and contribute to the development of more effective and sustainable agriculture practices, further research is needed to explore the full potential of these technologies in different crop species and environments.

9.
Environ Pollut ; 292(Pt B): 118397, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688724

RESUMO

Soil contamination by potentially toxic elements (PTEs) is one of the greatest threats to environmental degradation. Knowing where PTEs accumulated in soil can mitigate their adverse effects on plants, animals, and human health. We evaluated the potential of using long-term remote sensing images that reveal the bare soils, to detect and map PTEs in agricultural fields. In this study, 360 soil samples were collected at the superficial layer (0-20 cm) in a 2574 km2 agricultural area located in São Paulo State, Brazil. We tested the Soil Synthetic Image (SYSI) using Landsat TM/ETM/ETM+, Landsat OLI, and Sentinel 2 images. The three products have different spectral, temporal, and spatial resolutions. The time series multispectral images were used to reveal areas with bare soil and their spectra were used as predictors of soil chromium, iron, nickel, and zinc contents. We observed a strong linear relationship (-0.26 > r > -0.62) between the selected PTEs and the near infrared (NIR) and shortwave infrared (SWIR) bands of Sentinel (ensemble of 4 years of data), Landsat TM (35 years data), and Landsat OLI (4 years data). The clearest discrimination of soil PTEs was obtained from SYSI using a long term Landsat 5 collection over 35 years. Satellite data could efficiently detect the contents of PTEs in soils due to their relation with soil attributes and parent materials. Therefore, distinct satellite sensors could map the PTEs on tropics and assist in understanding their spatial dynamics and environmental effects.


Assuntos
Poluentes do Solo , Solo , Agricultura , Brasil , Monitoramento Ambiental , Humanos , Tecnologia de Sensoriamento Remoto , Poluentes do Solo/análise
10.
Sci Total Environ ; 807(Pt 3): 151001, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656569

RESUMO

Arsenic (As) and lead (Pb) are potentially toxic elements capable of developing several diseases in human beings such as cancer. Several adsorbent materials, including biochars, have been adopted as alternative measures designed to reduce the availability of As and Pb in water. The retention capacity of potentially toxic elements in biochars varies according to time, feedstock, and the pyrolysis temperature to produce the biochar. Our objectives in this study were to evaluate i) the aging effect of sugarcane straw pyrolyzed biochars at 350 (BC350), 550 (BC550), and 750 °C (BC750) and their ability to immobilize As and Pb; and ii) how the pyrolysis temperature and biochar aging alter the carbon content and quality of the solution and sediment. Biochars were applied at 5% (w/w), and their aging together with As and Pb immobilization effects were evaluated every 45 days over a total period of 180 days. The results were obtained using visible ultraviolet spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy combined with physical fractionation of organic matter and multivariate statistics. The groups formed in the Principal Component Analysis indicated that the change in the availability of As and Pb was related to the aging of the biochar and the temporal changes in the content and quality of organic carbon in the sediment and solution. The pyrolysis temperature was a key factor in the (im)mobilization capacity of As and Pb during the aging of the biochar. The increase in polysaccharides and organic matter associated with the particulate fraction can enhance the release of As in solution (24%). Increasing the fraction of organic matter associated with minerals reduced the availability of Pb by 58%. These findings may provide new insights into understanding the dynamics of organic matter and its role in the immobilization of As and Pb during biochar aging.


Assuntos
Arsênio , Pirólise , Envelhecimento , Carbono , Carvão Vegetal , Humanos , Chumbo , Temperatura
11.
Sensors (Basel) ; 21(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808185

RESUMO

Soil contamination by potentially toxic elements (PTEs) is intensifying under increasing industrialization. Thus, the ability to efficiently delineate contaminated sites is crucial. Visible-near infrared (vis-NIR: 350-2500 nm) and X-ray fluorescence (XRF: 0.02-41.08 keV) spectroscopic techniques have attracted tremendous attention for the assessment of PTEs. Recently, the application of fused vis-NIR and XRF spectroscopy, which is based on the complementary effect of data fusion, is also increasing. Moreover, different data manipulation methods, including feature selection approaches, affect the prediction performance. This study investigated the feasibility of using single and fused vis-NIR and XRF spectra while exploring feature selection algorithms for the assessment of key soil PTEs. The soil samples were collected from one of the most heavily polluted areas of the Czech Republic and scanned using laboratory vis-NIR and XRF spectrometers. Univariate filter (UF) and genetic algorithm (GA) were used to select the bands of greater importance for the PTE prediction. Support vector machine (SVM) was then used to train the models using the full-range and feature-selected spectra of single sensors and their fusion. It was found that XRF spectra alone (primarily GA-selected) performed better than single vis-NIR and fused spectral data for predictions of PTEs. Moreover, the prediction models that were derived from the fused data set (particularly the GA-selected) enhanced the models' accuracies as compared with the single vis-NIR spectra. In general, the results suggest that the GA-selected spectra obtained from the single XRF spectrometer (for As and Pb) and from the fusion of vis-NIR and XRF (for Pb) are promising for accurate quantitative estimation detection of the mentioned PTEs.


Assuntos
Solo , Máquina de Vetores de Suporte , Algoritmos
12.
Insects ; 12(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435312

RESUMO

Although monitoring insect pest populations in the fields is essential in crop management, it is still a laborious and sometimes ineffective process. Imprecise decision-making in an integrated pest management program may lead to ineffective control in infested areas or the excessive use of insecticides. In addition, high infestation levels may diminish the photosynthetic activity of soybean, reducing their development and yield. Therefore, we proposed that levels of infested soybean areas could be identified and classified in a field using hyperspectral proximal sensing. Thus, the goals of this study were to investigate and discriminate the reflectance characteristics of soybean non-infested and infested with Bemisia tabaci using hyperspectral sensing data. Therefore, cages were placed over soybean plants in a commercial field and artificial whitefly infestations were created. Later, samples of infested and non-infested soybean leaves were collected and transported to the laboratory to obtain the hyperspectral curves. The results allowed us to discriminate the different levels of infestation and to separate healthy from whitefly infested soybean leaves based on their reflectance. In conclusion, these results show that hyperspectral sensing can potentially be used to monitor whitefly populations in soybean fields.

13.
J Environ Manage ; 277: 111316, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980636

RESUMO

Studies on soil degradation are essential for environmental preservation. Since almost 30% of the global soils are degraded, it is important to study and map them for improving their management and use. We aimed to obtain a Soil Degradation Index (SDI) based on multi-temporal satellite images associated with climate variables, land use, terrain and soil attributes. The study was conducted in a 2598 km2 area in São Paulo State, Brazil, where 1562 soil samples (0-20 cm) were collected and analyzed by conventional methods. Spatial predictions of soil attributes such as clay, cation exchange capacity (CEC) and soil organic matter (OM) were performed using machine learning algorithms. A collection of 35-year Landsat images was used to obtain a multi-temporal bare soil image, whose spectral bands were used as soil attributes predictors. The maps of clay, CEC, climate variables, terrain attributes and land use were overlaid and the K-means clustering algorithm was applied to obtain five groups, which represented levels of soil degradation (classes from 1 to 5 representing very low to very high soil degradation). The SDI was validated using the predicted map of OM. The highest degradation level obtained in 15% of the area had the lowest OM content. Levels 1 and 4 of SDI were the most representative covering 24% and 23% of the area, respectively. Therefore, satellite images combined with environmental information significantly contributed to the SDI development, which supports decision-making on land use planning and management.


Assuntos
Tecnologia de Sensoriamento Remoto , Solo , Brasil , Clima , Meio Ambiente , Monitoramento Ambiental
14.
Sci Rep ; 10(1): 4461, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157136

RESUMO

The Earth's surface dynamics provide essential information for guiding environmental and agricultural policies. Uncovered and unprotected surfaces experience several undesirable effects, which can affect soil ecosystem functions. We developed a technique to identify global bare surface areas and their dynamics based on multitemporal remote sensing images to aid the spatiotemporal evaluation of anthropic and natural phenomena. The bare Earth's surface and its changes were recognized by Landsat image processing over a time range of 30 years using the Google Earth Engine platform. Two additional products were obtained with a similar technique: a) Earth's bare surface frequency, which represents where and how many times a single pixel was detected as bare surface, based on Landsat series, and b) Earth's bare soil tendency, which represents the tendency of bare surface to increase or decrease. This technique enabled the retrieval of bare surfaces on 32% of Earth's total land area and on 95% of land when considering only agricultural areas. From a multitemporal perspective, the technique found a 2.8% increase in bare surfaces during the period on a global scale. However, the rate of soil exposure decreased by ~4.8% in the same period. The increase in bare surfaces shows that agricultural areas are increasing worldwide. The decreasing rate of soil exposure indicates that, unlike popular opinion, more soils have been covered due to the adoption of conservation agriculture practices, which may reduce soil degradation.

15.
Data Brief ; 25: 104070, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31431909

RESUMO

Geospatial soil information is critical for agricultural policy formulation and decision making, land-use suitability analysis, sustainable soil management, environmental assessment, and other research topics that are of vital importance to agriculture and economy. Proximal and Remote sensing technologies enables us to collect, process, and analyze spectral data and to retrieve, synthesize, visualize valuable geospatial information for multidisciplinary uses. We obtained the soil class map provided in this article by processing and analyzing proximal and remote sensed data from soil samples collected in toposequences based on pedomorphogeological relashionships. The soils were classified up to the second categorical level (suborder) of the Brazilian Soil Classification System (SiBCS), as well as in the World Reference Base (WRB) and United States Soil Taxonomy (ST) systems. The raster map has 30 m resolution and its accuracy is 73% (Kappa coefficient of 0.73). The soil legend represents a soil class followed by its topsoil color.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA