Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823585

RESUMO

Organic waste materials and semi-products containing cellulose are used as low-cost adsorbents that are able to compete with conventional sorbents. In addition, their capacity to bind heavy metal ions can be intensified by chemical treatments using mineral and organic acids, bases, oxidizing agents, and organic compounds. In this paper, we studied the biosorption capacity of natural and modified wooden sawdust of poplar, cherry, spruce, and hornbeam in order to remove heavy metals from acidic model solutions. The Fourier transform infrared spectroscopy (FTIR) spectra showed changes of the functional groups due to the alkaline modification of sawdust, which manifested in the considerably increased intensity of the hydroxyl peaks. The adsorption isotherm models clearly indicated that the adsorptive behavior of metal ions in treated sawdust satisfied not only the Langmuir model, but also the Freundlich model. The adsorption data obtained for studied sorbents were better fitted by the Langmuir isotherm model for both metals, except for spruce sawdust. Surface complexation and ion exchange are the major mechanisms involved in metal ion removal. We investigated the efficiency of the alkaline modified sawdust for metal removal under various initial concentrations of Cu(II) and Zn(II) from model solutions. The highest adsorption efficiency values (copper 94.3% at pH 6.8 and zinc 98.2% at pH 7.3) were obtained for poplar modified by KOH. For all types of sawdust, we found that the sorption efficiency of modified sorbents was higher in comparison to untreated sawdust. The value of the pH initially increased more in the case of modified sawdust (8.2 for zinc removal with spruce NaOH) and then slowly decreased (7.0 for Zn(II) with spruce NaOH).

2.
Artigo em Inglês | MEDLINE | ID: mdl-29914075

RESUMO

The paper is focused on the research of biochemical treatment of sewage sludge and phosphogypsum under sulphate-reducing conditions with a phosphorus release process. The theoretical foundations of the work were based on the biochemical formalization using the principles of autocatalysis of natural systems. During the experimental research for the control of physicochemical parameters of the process spectroquantic, X-ray fluorescence analysis and other techniques were used. A schematic model of the dephosphatation process under anaerobic stabilization of sewage sludge and phosphogypsum was developed. The increase of phosphogypsum dosage had a close correlation with the release of phosphate ions. At the stimulating action of the phosphogypsum additive, a 2.5⁻5.0-fold increase in soluble phosphate concentration was observed. The rational dose of phosphogypsum was determined. Along with an increase the ratio of COD (Chemical Oxygen Demand)/phosphogypsum to 0.1, an increase in the phosphate ions in solution was observed. A further increase in the ratio of COD/phosphogypsum did not affect the concentration of phosphate ions in solution.


Assuntos
Bactérias Anaeróbias/metabolismo , Reatores Biológicos , Sulfato de Cálcio/química , Fósforo/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Sulfato de Cálcio/metabolismo , Fosfatos/análise , Fosfatos/metabolismo , Fósforo/análise , Fósforo/química , Esgotos/análise , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA