Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 167: 113303, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35850400

RESUMO

In this research, gold-nicel supported on activated carbon (AC) nanoadsorbent (AuNi@AC) synthesized by following a series of physicochemical procedures was prepared for the removal of Maxilon Blue 5G (MB) which is a cationic textile dye. Experimental studies based on parameters specifically pH, contact time, nano catalytic adsorbent particle, initial MB dye concentration and temperature effect were conducted in aqueous solutions in a batch system. AuNi@AC nanoadsorbents (NAs) reached the equilibrium in 30 min under optimum conditions in adsorption of the dye. The pseudo-first, second-order, and intra-particle diffusion models were tested to evaluate a the experimental results. Adsorption kinetics were found to be represented by the pseudo-second-order model, and the maximum adsorption capacity (qmax.) was calculated to be 542.90 mg/g (or 2.041 mmol/g). The synthesized magnetic AuNi@AC nanoadsorbent showed a high-efficiency reusability effect of about 64% after five reuse runs. Also, thermodynamic function parameters such as activation energy (Ea), Gibbs free energy (ΔG *), and entropy (ΔS *) were investigated in the sorption study. After all evaluation of data, it was concluded that the novel AuNi@AC nanoadsorbent could be considered as an effective support material for the removal of various organic pollutants in aquation solution especially for the removal of MB.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos Azo , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno , Termodinâmica , Purificação da Água/métodos
2.
Environ Pollut ; 302: 119033, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217139

RESUMO

Herein, activated carbon supported modified with bimetallic-platin ruthenium nano sorbent (PtRu@AC) was synthesized by a thermal decomposition process and used in the removal of methylene blue (MB) from aqueous solutions. The synthesized nano sorbents were characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS) spectroscopic techniques. The data obtained from characterization studies showed that PtRu@AC nano sorbent was highly crystalline and in a form of PtRu alloy with a monodispersed composition. The results indicated that the maximum adsorption capacity (qemax) for the removal of MB with PtRu@AC under optimum conditions was detected to be 1.788 mmol/g (569.4 mg/g). The experimental kinetic results of the study revealed that the adsorption of methylene blue was found to be more compatible with the false second-order model compared to some tested models. Calculations for thermodynamic functions including enthalpy change (ΔHo), entropy change (ΔSo), and Gibbs free energy change (ΔGo) values were performed to get an idea about the adsorption mechanism. As a result, the synthesized PtRu@AC nano adsorbent was detected as a highly effective adsorbent material in the removal of MB from aquatic mediums.


Assuntos
Rutênio , Poluentes Químicos da Água , Adsorção , Compostos Azo , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Ondas Ultrassônicas , Poluentes Químicos da Água/química
3.
Sci Rep ; 9(1): 10850, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350451

RESUMO

Herein, multiwalled carbon nanotube-based Fe3O4 nano-adsorbents (Fe3O4@MWCNT) were synthesized by ultrasonic reduction method. The synthesized nano-adsorbent (Fe3O4@MWCNT) exhibited efficient sonocatalytic activity to remove Maxilon Blue 5G, a textile dye, and present in a cationic form, in aqueous solution under ultrasonic irradiation. The magnetic nano-adsorbent particles were characterized by high-resolution transmission electron microscopy (HR-TEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). Some important parameters such as nano-adsorbent dosage, solution pH, initial dye and H2O2 concentration, reaction time, ultrasonic power and temperature were tested to determine the optimum conditions for the elimination of Maxilon Blue 5G dye. The reusability results showed that Fe3O4@MWCNT nano-adsorbent has a decrease of about 32.15% in the removal efficiency of Maxilon Blue 5G under ultrasonic irradiation after six times reuse. Additionally, in order to reveal the sufficient kinetic explanation, various experiments were performed at different temperatures and testing three kinetic models like the pseudo-first-order, pseudo-second-order and intraparticle diffusion for removal adsorption process of Maxilon Blue 5G using Fe3O4@MWCNT nano-adsorbent. The experimental kinetic results revealed that the adsorption process of Maxilon Blue 5G in the aquatic mediums using sono-Fenton method was found to be compatible with the intraparticle diffusion. Using kinetic models and studies, some activation parameters like enthalpy, entropy and Gibbs free energy for the adsorption process were calculated. The activation parameters indicated that Fe3O4@MWCNT nano-adsorbent could be used as an effective adsorbent for the removal of Maxilon Blue 5G as a textile dye and the adsorption process of Maxilon Blue 5G with Fe3O4@MWCNT nano-adsorbent is spontaneous.

4.
J Hazard Mater ; 153(1-2): 867-76, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17976907

RESUMO

The removal of copper ions from aqueous solutions by kaolinite was investigated by using a batch-type method. Effects of factors such as pH, ionic strength, temperature, acid-activation and calcination on copper adsorption were investigated. The uptake of copper was determined from changes in concentration as measured by atomic absorption spectrometry. The extent of copper adsorption increased with increasing pH and temperature and with decreasing ionic strength, acid-activation and calcination temperature. The Langmuir and Freundlich adsorption models were used to determine the isotherm parameters associated with the adsorption process. The results provide support for the adsorption of copper ions onto kaolinite. Thermodynamic parameters indicated the endothermic nature of copper adsorption on kaolinite. The experimental results were applied a batch design. As a result, the kaolinite may be used for removal of copper ions from aqueous solutions.


Assuntos
Cobre/química , Caulim/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Concentração Osmolar , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Sulfúricos/química , Temperatura
5.
J Hazard Mater ; 153(1-2): 677-84, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17950528

RESUMO

There is a great potential of woody hazelnut shell to use in some applications. Sorption studies are one of these. For this reason in this paper, batch adsorption of Cu(2+) ions onto hazelnut shells was studied. The capacity of the adsorption for the removal of copper ions from aqueous solution was investigated under different conditions such as solution contact time (1-360 min), particle size (0-75, 75-150 and 150-200 microm), temperature of solution (25-60 degrees ) and solution pH (3-7). Moreover, zeta potential of particles at different initial pHs (2-10) was measured. The equilibrium data were processed according to Langmuir and Freundlich's models and higher adsorption capacity values towards Cu(2+) ions were shown. The adsorption kinetics was investigated and the best fit was achieved by a second-order equation.


Assuntos
Cobre/química , Corylus , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Soluções , Temperatura , Fatores de Tempo
6.
J Hazard Mater ; 149(3): 650-6, 2007 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-17532563

RESUMO

Surface modification of clay minerals has become increasingly important for improving the practical applications of clays such as fillers and adsorbents. An investigation was carried out on the surface modification of sepiolite with aminopropylsilyl groups in 3-aminopropyltriethoxysilane (3-APT). The zeta potential of the modified sepiolite suspensions was measured as a function of initial electrolyte concentration and equilibrium pH using a Zeta Meter 3.0 for modified sepiolite. The utility of the 3-APT-modified sepiolite was investigated as an adsorbent for removal of various heavy metal ions such as Fe, Mn, Co, Zn, Cu, Cd and Ni from aqueous solutions. The effects of various factors on the adsorption, such as pH, ionic strength and temperature of the solution were studied. The results showed that the amount adsorbed increases with solution pH in the pH range of 1.5 and 7.0; indicated that the modified sepiolite adsorbed Fe and Mn ions more than other metal ions such as Co, Zn, Cu, Cd and Ni. It was found that the temperature had an important effect on metal ion adsorption by the modified sepiolite. The adsorption isotherm has been determined and data have been analyzed according to the Langmuir and Freundlich models.


Assuntos
Físico-Química/métodos , Silicatos de Magnésio/química , Silanos/química , Purificação da Água/métodos , Adsorção , Eletrólitos , Concentração de Íons de Hidrogênio , Resíduos Industriais , Íons , Cinética , Metais/química , Modelos Químicos , Propilaminas , Propriedades de Superfície , Temperatura
7.
J Hazard Mater ; 134(1-3): 211-9, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16343759

RESUMO

The adsorption of PAM onto sepiolite from aqueous solutions has been investigated systematically as a function of some parameters such as calcination temperature of sepiolite, pH, ionic strength and temperature. The adsorption of cationic polyacrylamide (PAM) increases with pH from 5.50 to 11.00, temperature from 25 to 55 degrees C and ionic strength from 0 to 0.1molL(-1). The sepiolite sample calcined at 200 degrees C has a higher adsorption capacity than the other calcined samples. Adsorption isotherms of PAM onto sepiolite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. The zeta potentials of sepiolite suspensions have been measured in aqueous solutions of NaCl and different PAM concentrations and pH. From the experimental results: (i) pH strongly alters the zeta potential of sepiolite, (ii) sepiolite has an isoelectric point at about pH 6.6 in water and about pH 8 in 250mgL(-1) PAM concentration, (iii) PAM changes the interface charge from negative to positive for sepiolite. Effect of temperature on adsorption has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy. The dimensionless separation factor (R(L)) has shown that sepiolite can be used for adsorption of PAM from aqueous solutions.


Assuntos
Resinas Acrílicas/química , Silicatos de Magnésio/química , Adsorção , Cátions/química , Fenômenos Químicos , Físico-Química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Concentração Osmolar , Temperatura , Difração de Raios X
8.
J Colloid Interface Sci ; 296(2): 472-9, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16298380

RESUMO

The adsorption of polyvinylimidazole (PVI) onto kaolinite from aqueous solutions has been investigated systematically as a function of parameters such as calcination temperature of kaolinite, pH, ionic strength, and temperature. According to the experimental results, the adsorption of PVI increases with pH from 8.50 to 11.50, temperature from 25 to 55 degrees C, and ionic strength from 0 to 0.1 mol L(-1). The kaolinite sample calcined at 600 degrees C has a maximum adsorption capacity. Adsorption isotherms of PVI onto kaolinite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. Furthermore, the zeta potentials of kaolinite suspensions have been measured in aqueous solutions of different PVI concentrations and pH. From the experimental results, (i) pH strongly alters the zeta potential of kaolinite; (ii) kaolinite has an isoelectric point at about pH 2.35 in water and about pH 8.75 in 249.9 ppm PVI concentration; (iii) PVI changes the interface charge from negative to positive for kaolinite. The study of temperature effect has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy changes. The dimensionless separation factor (RL) has shown that kaolinite can be used for adsorption of PVI from aqueous solutions.

9.
J Colloid Interface Sci ; 291(2): 309-18, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16023129

RESUMO

In this study, the adsorption properties of unexpanded and expanded perlite samples in aqueous cetyltrimethylammonium bromide (CTAB) solutions were investigated as a function of ionic strength, pH, and temperature. It was found that the amount of cetyltrimethylammonium bromide adsorbed onto unexpanded perlite was greater than that onto expanded perlite. For both perlite samples, the sorption capacity increased with increasing ionic strength and pH and decreasing temperature. Experimental data were analyzed by Langmuir and Freundlich isotherms and it was found that the experimental data were correlated reasonably well by the Freundlich adsorption isotherm. Furthermore, the isotherm parameters (KF and n) were also calculated. The adsorption enthalpy was determined from experimental data at different temperatures. Results have shown that the interaction between the perlite surface and CTAB is a physical interaction, and the adsorption process is an exothermic one.


Assuntos
Óxido de Alumínio/química , Compostos de Cetrimônio/química , Dióxido de Silício/química , Temperatura , Água/química , Adsorção , Cetrimônio , Concentração de Íons de Hidrogênio
10.
J Colloid Interface Sci ; 281(1): 240-8, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15567402

RESUMO

The present paper deals with the electrokinetic characterization of sepiolite. A series of systematic zeta potential measurements have been carried out to determine the isoelectric point (iep) and potential-determining ions (pdi), and the effect of mono-, di-, and trivalent electrolytes such as NaCl, KCl, LiCl, NaNO(3), NaCH(3)COO, MgCl(2), CaCl(2), BaCl(2), CoCl(2), CuCl(2), Pb(NO(3))(2), Na(2)CO(3), Na(2)SO(4), AlCl(3), FeCl(3), and Na(3)PO(4) on the zeta potential of sepiolite. Zeta potential has been calculated with the aid of Smoluchowski's equation. Sepiolite yields an isoelectric point at pH 6.6. The zeta potential for the sepiolite has ranged from +23.3 mV at pH approximately 2 to -22.4 mV at pH approximately 8 at 20 +/- 2 degrees C in water. The valency of the ions have proven to have a great influence on the electrokinetic behavior of the suspension. Monovalent cations were found to have a weak effect, while di- and trivalent cations made the zeta potential positive. Charge reversal was observed for divalent cations at 1 x 10(-2) M and for trivalent cations at 3 x 10(-4) M. As a result, it can be said that monovalent cations are indifferent ions when di- and trivalent cations are potential-determining ions.

11.
J Hazard Mater ; 116(1-2): 135-45, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15561372

RESUMO

Sepiolite, a highly porous mineral, is becoming widely used as an alternative material in areas where sorptive, catalytic and rheological applications are required. High ion exchange capacity and high surface area and more importantly its relatively cheap price make it an attractive adsorbent. In this study, the adsorption of acid red 57 by natural mesoporous sepiolite has been examined in order to measure the ability of this mineral to remove coloured textile dyes from wastewater. For this purpose, a series of batch adsorption tests of acid red 57 from aqueous sepiolite solutions have been systematically investigated as a function of parameters such as pH, ionic strength and temperature. Adsorption equilibrium was reached within 1h. The removal of acid red 57 decreases with pH from 3 to 9 and temperature from 25 to 55 degrees C, whereas it increases with ionic strength from 0 to 0.5 mol L(-1). Adsorption isotherms of acid red on sepiolite were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. It was found that the Langmuir model appears to fit the isotherm data better than the Freundlich model. The physical properties of this adsorbent were consistent with the parameters obtained from the isotherm equations. Approximately, 21.49% weight loss was observed. The surface area value of sepiolite was 342 m2 g(-1) at 105 degrees C, and it increased to 357 m2 g(-1) at 200 degrees C. Further increase in temperature caused channel plugging and crystal structure deformation, as a result the surface area values showed a decrease with temperature. The data obtained from adsorption isotherms at different temperatures have been used to calculate some thermodynamic quantities such as the Gibbs energy, heat and entropy of adsorption. The thermodynamic data indicate that acid red 57 adsorption onto sepiolite is characterized by physical adsorption. The dimensionless separation factor (RL) have shown that sepiolite can be used for removal of acid red 57 from aqueous solutions. The sorption capacity of the sepiolite is comparable to the other available adsorbents, and it is quite cheaper.


Assuntos
Antiácidos/química , Compostos Azo/isolamento & purificação , Corantes/isolamento & purificação , Silicatos de Magnésio/química , Modelos Químicos , Naftalenos/isolamento & purificação , Purificação da Água/métodos , Adsorção , Compostos Azo/química , Corantes/química , Cinética , Naftalenos/química , Temperatura , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA