Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(20): 13398-13405, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056487

RESUMO

We used indirect nanoplasmonic sensing (INPS) coupled with mass spectrometry to study CO and oxygen adsorption as well as CO oxidation, on Pt nanoparticles, in the Torr pressure range. Due to an optimization of the physical parameters of our plasmonic sample, we obtain a highly sensitive probe that can detect gas adsorption of a few hundredths of a monolayer, even with a very low number density of Pt particles. Moreover and for the first time, a similarity is observed between the sign and the evolution of the localized surface plasmon resonance (LSPR) peak shift and the work function measurements for CO and oxygen chemisorption. Controlling the size, shape, and surface density of Pt particles, the turnover frequency (TOF) has also been accurately determined. For similar experimental conditions, the TOF is close to those measured on Pt/oxide powder catalysts and Pt(100) single crystals.

2.
Langmuir ; 34(19): 5381-5385, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29678113

RESUMO

We demonstrate in this work that using nanoplasmonic sensing it is possible to follow the adsorption/desorption of water molecules on gold nanodisks nanofabricated by electron beam lithography. This quantitative method is highly sensitive allowing the detection of a few hundredths of adsorbed monolayer. Disk parameters (height, diameter, and interdisk distance) have been optimized after finite-difference time-domain (FDTD) simulations in order to obtain the best localized surface plasmon resonance (LSPR) signal-to-noise ratio. Finally, we have precisely measured the adsorption kinetics of water on gold as a function of the relative humidity of the surrounding medium.

3.
J Phys Chem Lett ; 6(20): 4148-52, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26722790

RESUMO

We demonstrate in this work that the indirect nanoplasmonic sensing lets us follow the adsorption/desorption of water molecules on soot particles that are a major contributor of the global warming. Increasing the relative humidity of the surrounding medium we measure a shift in wavelength of the localized surface plasmon resonance response of gold nanodisks on which soot particles are deposited. We show a singular and reversible blue shift with hydrophilic aircraft soot particles interpreted from a basic model as a reversible morphological change of the soot aggregates. This new method is highly sensitive and interesting to follow the change of optical properties of aerosols during their aging in the atmosphere, where they can adsorb and react with different gas molecules.

4.
Chemphyschem ; 11(18): 3823-35, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20931592

RESUMO

The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.


Assuntos
Aerossóis , Gases , Compostos Orgânicos/análise , Compostos Orgânicos/química , Titulometria , 8-Hidroxi-2'-Desoxiguanosina , Aerossóis/análise , Aerossóis/química , Atmosfera , Creatinina/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Gases/análise , Gases/química , Humanos , Oxirredução , Oxigênio/química , Propriedades de Superfície , Titulometria/métodos
5.
Phys Chem Chem Phys ; 10(17): 2332-44, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18414725

RESUMO

The interaction of water with laboratory soots possessing a range of properties relevant for atmospheric studies is examined by two complementary methods: gravimetrical measurement of water uptake coupled with chemical composition and porosity analysis and HTDMA (humidified tandem differential mobility analyzer) inference of water uptake accompanied by separate TEM (transmission electron microscopy) analysis of single particles. The first method clarifies the mechanism of water uptake for bulk soot and allows the classification of soot with respect to its hygroscopicity. The second method highlights the dependence of the soot aerosol growth factor on relative humidity (RH) for quasi-monodisperse particles. Hydrophobic and hydrophilic soot are qualitatively defined by their water uptake and surface polarity: laboratory soot particles are thus classified from very hydrophobic to very hydrophilic. Thermal soot particles produced from natural gas combustion are classified as hydrophobic with a surface of low polarity since water is found to cover only half of the surface. Graphitized thermal soot particles are proposed for comparison as extremely hydrophobic and of very low surface polarity. Soot particles produced from laboratory flame of TC1 aviation kerosene are less hydrophobic, with their entire surface being available for statistical monolayer water coverage at RH approximately 10%. Porosity measurements suggest that, initially, much of this surface water resides within micropores. Consequently, the growth factor increase of these particles to 1.07 at RH > 80% is attributed to irreversible swelling that accompanies water uptake. Hysteresis of adsorption/desorption cycles strongly supports this conclusion. In contrast, aircraft engine soot, produced from burning TC1 kerosene in a gas turbine engine combustor, has an extremely hydrophilic surface of high polarity. Due to the presence of water soluble organic and inorganic material it can be covered by many water layers even below water saturation conditions. This soot demonstrates a gradual diameter growth factor (D(wet)/D(dry)) increase up to 1.22 at 93% relative humidity, most likely due to the presence of single particles with water soluble material heterogeneously distributed over their surface.


Assuntos
Material Particulado/química , Fuligem/química , Água/química , Umidade , Interações Hidrofóbicas e Hidrofílicas , Querosene , Tamanho da Partícula , Material Particulado/classificação , Porosidade , Solubilidade , Fuligem/classificação , Propriedades de Superfície
6.
J Phys Chem B ; 109(38): 18103-6, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16853325

RESUMO

We present an experimental work devoted to study of the thermodynamical properties of solid methanol. We combine Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS) to measure, for the first time, the vapor pressure of various methanol solid phases and determine their Clausius-Clapeyron equations. We perform our experiments between T = 130 K and the triple point temperature T(t) = 175.61 K. When methanol is condensed from its vapor below T(t), we observe three different solid phases depending on temperature. A condensation at T = 130 K forms a metastable phase with an enthalpy of sublimation deltaH(metastable-vapor) = 42.9 +/- 0.5 kJ.mol(-1). Upon heating, this phase transforms itself at T approximately 145 K to the alpha-phase that has an enthalpy of sublimation deltaH(alpha-vapor) = 46.9 +/- 0.2 kJ.mol(-1). Cooling the alpha-phase does not lead back to the metastable phase, whereas heating this alpha-phase leads to the beta-phase occurrence at T(alpha-beta) = 157.36 K. This latter one is stable until T(t) and has an enthalpy of sublimation deltaH(beta-vapor) = 44.2 +/- 0.5 kJ.mol(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA