Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8017, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049409

RESUMO

A key step in unraveling the mysteries of materials exhibiting unconventional superconductivity is to understand the underlying pairing mechanism. While it is widely agreed upon that the pairing glue in many of these systems originates from antiferromagnetic spin correlations, a microscopic description of pairs of charge carriers remains lacking. Here we use state-of-the art numerical methods to probe the internal structure and dynamical properties of pairs of charge carriers in quantum antiferromagnets in four-legged cylinders. Exploiting the full momentum resolution in our simulations, we are able to distinguish two qualitatively different types of bound states: a highly mobile, meta-stable pair, which has a dispersion proportional to the hole hopping t, and a heavy pair, which can only move due to spin exchange processes and turns into a flat band in the Ising limit of the model. Understanding the pairing mechanism can on the one hand pave the way to boosting binding energies in related models, and on the other hand enable insights into the intricate competition of various phases of matter in strongly correlated electron systems.

2.
Nature ; 623(7987): 509-513, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968525

RESUMO

Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically1-7, but an experimental demonstration8 in an extended system has been missing. Here we investigate MoSe2/WS2 van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance9,10, we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.

3.
Proc Natl Acad Sci U S A ; 119(39): e2211670119, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36126100

RESUMO

The interplay between charge order and superconductivity remains one of the central themes of research in quantum materials. In the case of cuprates, the coupling between striped charge fluctuations and local electromagnetic fields is especially important, as it affects transport properties, coherence, and dimensionality of superconducting correlations. Here, we study the emission of coherent terahertz radiation in single-layer cuprates of the La2-xBaxCuO4 family, for which this effect is expected to be forbidden by symmetry. We find that emission vanishes for compounds in which the stripes are quasi-static but is activated when c-axis inversion symmetry is broken by incommensurate or fluctuating charge stripes, such as in La1.905Ba0.095CuO4 and in La1.845Ba0.155CuO4. In this case, terahertz radiation is emitted by surface Josephson plasmons, which are generally dark modes, but couple to free space electromagnetic radiation because of the stripe modulation.

4.
Phys Rev Lett ; 128(12): 120404, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394310

RESUMO

In this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that can be implemented with arrays of ions confined by individual microtraps, and that is closely related to the Holstein model of condensed matter physics, used to describe electron-phonon interactions. In contrast to earlier proposals, we focus on simulating many-electron systems and inspect the competition between charge-density wave order, fermion pairing, and phase separation. In our numerical study, we employ a combination of complementary approaches, based on non-Gaussian variational ansatz states and matrix product states, respectively. We demonstrate that this hybrid approach outperforms standard density-matrix renormalization group calculations.

5.
Phys Rev Lett ; 127(19): 197004, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797143

RESUMO

Understanding the nature of charge carriers in doped Mott insulators holds the key to unravelling puzzling properties of strongly correlated electron systems, including cuprate superconductors. Several theoretical models suggested that dopants can be understood as bound states of partons, the analogues of quarks in high-energy physics. However, direct signatures of spinon-chargon bound states are lacking, both in experiment and theory. Here we propose a rotational variant of angle-resolved photo-emission spectroscopy (ARPES) and calculate rotational spectra numerically using the density-matrix renormalization group. We identify long-lived rotational resonances for an individual dopant, which we interpret as a direct indicator of the microscopic structure of spinon-chargon bound states. Similar to Regge trajectories reflecting the quark structure of mesons, we establish a linear dependence of the rotational energy on the superexchange coupling. The rotational peaks we find are strongly suppressed in standard ARPES spectra, but we suggest a multiphoton extension of ARPES which allows us to access rotational spectra. Our findings suggest that multiphoton spectroscopy experiments should provide new insights into emergent universal features of strongly correlated electron systems.

6.
Phys Rev Lett ; 126(2): 026401, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512175

RESUMO

Traditionally, one- and two-point correlation functions are used to characterize many-body systems. In strongly correlated quantum materials, such as the doped 2D Fermi-Hubbard system, these may no longer be sufficient, because higher-order correlations are crucial to understanding the character of the many-body system and can be numerically dominant. Experimentally, such higher-order correlations have recently become accessible in ultracold atom systems. Here, we reveal strong non-Gaussian correlations in doped quantum antiferromagnets and show that higher-order correlations dominate over lower-order terms. We study a single mobile hole in the t-J model using the density matrix renormalization group and reveal genuine fifth-order correlations which are directly related to the mobility of the dopant. We contrast our results to predictions using models based on doped quantum spin liquids which feature significantly reduced higher-order correlations. Our predictions can be tested at the lowest currently accessible temperatures in quantum simulators of the 2D Fermi-Hubbard model. Finally, we propose to experimentally study the same fifth-order spin-charge correlations as a function of doping. This will help to reveal the microscopic nature of charge carriers in the most debated regime of the Hubbard model, relevant for understanding high-T_{c} superconductivity.

7.
Nature ; 579(7800): 528-533, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32123352

RESUMO

Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers1. An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades2,3. Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots4 to demonstrate Nagaoka ferromagnetism5. This form of itinerant magnetism has been rigorously studied theoretically6-9 but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.

8.
Phys Rev Lett ; 122(3): 039901, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735424

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.117.255302.

9.
Phys Rev X ; 9(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117577

RESUMO

We experimentally investigate the effects of parametric instabilities on the short-time heating process of periodically-driven bosons in 2D optical lattices with a continuous transverse (tube) degree of freedom. We analyze three types of periodic drives: (i) linear along the x-lattice direction only, (ii) linear along the lattice diagonal, and (iii) circular in the lattice plane. In all cases, we demonstrate that the BEC decay is dominated by the emergence of unstable Bogoliubov modes, rather than scattering in higher Floquet bands, in agreement with recent theoretical predictions. The observed BEC depletion rates are much higher when shaking both along x and y directions, as opposed to only x or only y. We also report an explosion of the decay rates at large drive amplitudes, and suggest a phenomenological description beyond Bogoliubov theory. In this strongly-coupled regime, circular drives heat faster than diagonal drives, which illustrates the non-trivial dependence of the heating on the choice of drive.

10.
Phys Rev Lett ; 121(2): 023601, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085738

RESUMO

Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on the assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting any information about their microscopic initial conditions. This fundamental paradigm is challenged by disordered systems, in which a slowdown or even absence of thermalization is expected. We report the observation of critical thermalization in a three dimensional ensemble of ∼10^{6} electronic spins coupled via dipolar interactions. By controlling the spin states of nitrogen vacancy color centers in diamond, we observe slow, subexponential relaxation dynamics and identify a regime of power-law decay with disorder-dependent exponents; this behavior is modified at late times owing to many-body interactions. These observations are quantitatively explained by a resonance counting theory that incorporates the effects of both disorder and interactions.

11.
Phys Rev Lett ; 120(8): 083401, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543028

RESUMO

We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.

12.
Phys Rev Lett ; 117(25): 255302, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036203

RESUMO

We analyze the recently measured anomalous transport properties of an ultracold gas through a ballistic constriction [S. Krinner et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8144 (2016)]. The quantized conductance observed at weak interactions increases severalfold as the gas is made strongly interacting, which cannot be explained by the Landauer theory of single-channel transport. We show that this phenomenon is due to the multichannel Andreev reflections at the edges of the constriction, where the interaction and confinement result in a superconducting state. Andreev processes convert atoms of otherwise reflecting channels into the condensate propagating through the constriction, leading to a significant excess conductance. Furthermore, we find the spin conductance being suppressed by superconductivity; the agreement with experiment provides an additional support for our model.

13.
Nat Commun ; 7: 11994, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312285

RESUMO

Topological quantum phases cannot be characterized by Ginzburg-Landau type order parameters, and are instead described by non-local topological invariants. Experimental platforms capable of realizing such exotic states now include synthetic many-body systems such as ultracold atoms or photons. Unique tools available in these systems enable a new characterization of strongly correlated many-body states. Here we propose a general scheme for detecting topological order using interferometric measurements of elementary excitations. The key ingredient is the use of mobile impurities that bind to quasiparticles of a host many-body system. Specifically, we show how fractional charges can be probed in the bulk of fractional quantum Hall systems. We demonstrate that combining Ramsey interference with Bloch oscillations can be used to measure Chern numbers characterizing the dispersion of individual quasiparticles, which gives a direct probe of their fractional charges. Possible extensions of our method to other many-body systems, such as spin liquids, are conceivable.

14.
Phys Rev Lett ; 116(10): 105302, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015490

RESUMO

Giant impurity excitations are powerful probes for exploring new regimes of far out of equilibrium dynamics in few- and many-body quantum systems, and in situ observations of correlations. Motivated by recent experimental progress in spectroscopic studies of Rydberg excitations in ultracold atoms, we develop a new theoretical approach for describing multiscale dynamics of Rydberg excitations in quantum Bose gases. We find that the crossover from few- to many-body dynamics manifests in a dramatic change in spectral profile from resolved molecular lines to broad Gaussian distributions representing a superpolaronic state in which many atoms bind to the Rydberg impurity. We discuss signatures of this crossover in the temperature and density dependence of the spectra.

15.
Phys Rev Lett ; 115(23): 233602, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684118

RESUMO

The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

16.
Sci Rep ; 5: 12124, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26183614

RESUMO

When a mobile impurity interacts with a many-body system, such as a phonon bath, a polaron is formed. Despite the importance of the polaron problem for a wide range of physical systems, a unified theoretical description valid for arbitrary coupling strengths is still lacking. Here we develop a renormalization group approach for analyzing a paradigmatic model of polarons, the so-called Fröhlich model, and apply it to a problem of impurity atoms immersed in a Bose-Einstein condensate of ultra cold atoms. Polaron energies obtained by our method are in excellent agreement with recent diagrammatic Monte Carlo calculations for a wide range of interaction strengths. They are found to be logarithmically divergent with the ultra-violet cut-off, but physically meaningful regularized polaron energies are also presented. Moreover, we calculate the effective mass of polarons and find a smooth crossover from weak to strong coupling regimes. Possible experimental tests of our results in current experiments with ultra cold atoms are discussed.

17.
Sci Rep ; 5: 7692, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25582915

RESUMO

Topological excitations keep fascinating physicists since many decades. While individual vortices and solitons emerge and have been observed in many areas of physics, their most intriguing higher dimensional topological relatives, skyrmions (smooth, topologically stable textures) and magnetic monopoles emerging almost necessarily in any grand unified theory and responsible for charge quantization remained mostly elusive. Here we propose that loading a three-component nematic superfluid such as (23)Na into a deep optical lattice and thereby creating an insulating core, one can create topologically stable skyrmion textures. The skyrmion's extreme stability and its compact geometry enable one to investigate the skyrmion's structure, and the interplay of topology and excitations in detail. In particular, the superfluid's excitation spectrum as well as the quantum numbers are demonstrated to change dramatically due to the skyrmion, and reflect the presence of a trapped monopole, as imposed by the skyrmion's topology.

18.
Phys Rev Lett ; 113(24): 243002, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541771

RESUMO

Systems of strongly interacting dipoles offer an attractive platform to study many-body localized phases, owing to their long coherence times and strong interactions. We explore conditions under which such localized phases persist in the presence of power-law interactions and supplement our analytic treatment with numerical evidence of localized states in one dimension. We propose and analyze several experimental systems that can be used to observe and probe such states, including ultracold polar molecules and solid-state magnetic spin impurities.

19.
Phys Rev Lett ; 113(14): 147204, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325656

RESUMO

We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems.

20.
Phys Rev Lett ; 113(8): 087202, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192121

RESUMO

It is generally believed that superconductivity only weakly affects the indirect exchange between magnetic impurities. If the distance r between impurities is smaller than the superconducting coherence length (r ≲ ξ), this exchange is thought to be dominated by Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, identical to the those in a normal metallic host. This perception is based on a perturbative treatment of the exchange interaction. Here, we provide a nonperturbative analysis and demonstrate that the presence of Yu-Shiba-Rusinov bound states induces a strong 1/r(2) antiferromagnetic interaction that can dominate over conventional RKKY even at distances significantly smaller than the coherence length (r ≪ ξ). Experimental signatures, implications, and applications are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA