Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(8): 2087-2101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234172

RESUMO

Understanding how inhibitory pathways influence motor cortical activity during fatiguing contractions may provide valuable insight into mechanisms associated with multiple sclerosis (MS) muscle activation. Short-latency afferent inhibition (SAI) reflects inhibitory interactions between the somatosensory cortex and the motor cortex, and although SAI is typically reduced with MS, it is unknown how SAI is regulated during exercise-induced fatigue. The current study examined how SAI modulates motor evoked potentials (MEPs) during fatiguing contractions. Fourteen people with relapsing-remitting MS (39 ± 6 years, nine female) and 10 healthy individuals (36 ± 6 years, six female) participated. SAI was induced by stimulation of the median nerve that was paired with TMS over the motor representation of the abductor pollicis brevis. A contraction protocol was employed that depressed force generating capacity using a sustained 3-min 15% MVC, immediately followed by a low-intensity (15% MVC) intermittent contraction protocol so that MEP and SAI could be measured during the rest phases of each duty cycle. Similar force, electromyography and MEP responses were observed between groups. However, the MS group had significantly reduced SAI during the contraction protocol compared to the healthy control group (p < .001). Despite the MS group reporting greater scores on the Fatigue Severity Scale and Modified Fatigue Impact Scale, these scales did not correlate with inhibitory measures. As there were no between-group differences in SSEPs, MS-related SAI differences during the fatiguing contractions were most likely associated with disease-related changes in central integration.


Assuntos
Esclerose Múltipla , Fadiga Muscular , Humanos , Feminino , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Contração Muscular/fisiologia , Estimulação Elétrica , Vias Aferentes/fisiologia
2.
Exp Brain Res ; 241(6): 1543-1553, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37103494

RESUMO

This study used transcranial magnetic stimulation (TMS) to determine if muscarinic receptor blockade affects muscle responses during voluntary contractions. Motor evoked potentials (MEPs) were recorded from biceps brachii in 10 subjects (age: 23 ± 2) during 10%, 25%, 50%, 75%, and 100% maximal voluntary contractions (MVCs). Each contraction intensity was examined under non-fatigued and fatigued conditions. All measurements were obtained post-ingestion of 25 mg promethazine or placebo. MEP area and the duration of the TMS-evoked silent period (SP) were calculated for all contractions. No drug-related differences were detected for MEP area during non-fatigued or fatigued contractions. A main effect of drug was detected for the SP (p = 0.019) where promethazine increased SP duration by an average of 0.023 [Formula: see text] 0.015 s. This drug effect was only identified for the unfatigued contractions and not following the sustained fatiguing contractions (p = 0.105). The cholinergic system does not influence corticospinal excitability during voluntary muscle contractions, but instead affects neural circuits associated with the TMS-evoked SP. Given the prevalence of cholinergic properties in prescription and over-the-counter medications, the current study enhances our understanding of mechanisms that may contribute to motor side-effects.


Assuntos
Acetilcolina , Fadiga Muscular , Adulto , Humanos , Adulto Jovem , Colinérgicos , Estimulação Elétrica , Eletromiografia , Potencial Evocado Motor/fisiologia , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Prometazina , Estimulação Magnética Transcraniana
3.
J Neurophysiol ; 125(4): 1269-1278, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625939

RESUMO

Although synaptic transmission in motor pathways can be regulated by neuromodulators, such as acetylcholine, few studies have examined how cholinergic activity affects cortical and spinal motor circuits following muscle contractions of varying intensities. This was a human, double-blinded, placebo-controlled, crossover study. Participants attended two sessions where they were administered either a placebo or 25 mg of promethazine. Electromyography of the abductor digiti minimi (ADM) was measured for all conditions. Motor evoked potentials (MEPs) were obtained via motor cortical transcranial magnetic stimulation (TMS), and F waves were obtained via ulnar nerve electrical stimulation. MEPs and F waves were examined: 1) when the muscle was at rest; 2) after the muscle had been active; and 3) after the muscle had been fatigued. MEPs were unaffected by muscarinic receptor blockade when measurements were recorded from resting muscle or following a 50% isometric maximal voluntary contraction (MVC). However, muscarinic receptor blockade increased MEP area following a 10-s MVC (P = 0.019) and following a fatiguing 60-s MVC (P = 0.040). F wave area and persistence were not affected by promethazine for any muscle contraction condition. Corticospinal excitability was influenced by cholinergic effects when voluntary drive to the muscle was high. Given that spinal motoneurone excitability remained unaffected, it is likely that cholinergic effects are influential within the motor cortex during strong muscle contractions. Future research should evaluate how cholinergic effects alter the relationship between subcortical structures and the motor cortex, as well as brainstem neuromodulatory pathways and spinal motoneurons.NEW & NOTEWORTHY The relationship between motor function and cholinergic circuitry in the central nervous system is complex. Although many studies have approached this issue at the cellular level, few studies have examined cholinergic mechanisms in humans performing muscle contractions. This study demonstrates that blockade of muscarinic acetylcholine receptors enhances motor evoked potentials (elicited with transcranial magnetic stimulation) following strong muscle contractions, but not weak muscle contractions.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Potencial Evocado Motor/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Prometazina/farmacologia , Medula Espinal/efeitos dos fármacos , Adulto , Estudos Cross-Over , Método Duplo-Cego , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino , Antagonistas Muscarínicos/administração & dosagem , Prometazina/administração & dosagem , Tratos Piramidais/efeitos dos fármacos , Estimulação Magnética Transcraniana , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA