Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(11): 4989-4996, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38440851

RESUMO

The triple bond in N2 is significantly stronger than the double bond in O2, meaning that synthesizing nitrogen-rich nitrides typically requires activated nitrogen precursors, such as ammonia, plasma-cracked atomic nitrogen, or high-pressure N2. Here, we report a synthesis of nitrogen-rich nitrides under ambient pressure and atmosphere. Using Na2MoO4 and dicyandiamide precursors, we synthesized nitrogen-rich γ-Mo2N3 in an alumina crucible under an ambient atmosphere, heated in a box furnace between 500 and 600 °C. Byproducts of this metathesis reaction include volatile gases and solid Na(OCN), which can be washed away with water. X-ray diffraction and neutron diffraction showed Mo2N3 with a rock salt structure having cation vacancies, with no oxygen incorporation, in contrast to the more common nitrogen-poor rock salt Mo2N with anion vacancies. Moreover, an increase in temperature to 700 °C resulted in molybdenum oxynitride, Mo0.84N0.72O0.27. This work illustrates the potential for dicyandiamide as an ambient-temperature metathesis precursor for an increased effective nitrogen chemical potential under ambient conditions. The classical experimental setting often used for solid-state oxide synthesis, therefore, has the potential to expand the nitride chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA