Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791405

RESUMO

Apolipoprotein-CIII (apo-CIII) inhibits the clearance of triglycerides from circulation and is associated with an increased risk of diabetes complications. It exists in four main proteoforms: O-glycosylated variants containing either zero, one, or two sialic acids and a non-glycosylated variant. O-glycosylation may affect the metabolic functions of apo-CIII. We investigated the associations of apo-CIII glycosylation in blood plasma, measured by mass spectrometry of the intact protein, and genetic variants with micro- and macrovascular complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) of type 2 diabetes in a DiaGene study (n = 1571) and the Hoorn DCS cohort (n = 5409). Mono-sialylated apolipoprotein-CIII (apo-CIII1) was associated with a reduced risk of retinopathy (ß = -7.215, 95% CI -11.137 to -3.294) whereas disialylated apolipoprotein-CIII (apo-CIII2) was associated with an increased risk (ß = 5.309, 95% CI 2.279 to 8.339). A variant of the GALNT2-gene (rs4846913), previously linked to lower apo-CIII0a, was associated with a decreased prevalence of retinopathy (OR = 0.739, 95% CI 0.575 to 0.951). Higher apo-CIII1 levels were associated with neuropathy (ß = 7.706, 95% CI 2.317 to 13.095) and lower apo-CIII0a with macrovascular complications (ß = -9.195, 95% CI -15.847 to -2.543). In conclusion, apo-CIII glycosylation was associated with the prevalence of micro- and macrovascular complications of diabetes. Moreover, a variant in the GALNT2-gene was associated with apo-CIII glycosylation and retinopathy, suggesting a causal effect. The findings facilitate a molecular understanding of the pathophysiology of diabetes complications and warrant consideration of apo-CIII glycosylation as a potential target in the prevention of diabetes complications.


Assuntos
Apolipoproteína C-III , Diabetes Mellitus Tipo 2 , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/etiologia , Glicosilação , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834292

RESUMO

Apolipoprotein-CIII (apo-CIII) is involved in triglyceride-rich lipoprotein metabolism and linked to beta-cell damage, insulin resistance, and cardiovascular disease. Apo-CIII exists in four main proteoforms: non-glycosylated (apo-CIII0a), and glycosylated apo-CIII with zero, one, or two sialic acids (apo-CIII0c, apo-CIII1 and apo-CIII2). Our objective is to determine how apo-CIII glycosylation affects lipid traits and type 2 diabetes prevalence, and to investigate the genetic basis of these relations with a genome-wide association study (GWAS) on apo-CIII glycosylation. We conducted GWAS on the four apo-CIII proteoforms in the DiaGene study in people with and without type 2 diabetes (n = 2318). We investigated the relations of the identified genetic loci and apo-CIII glycosylation with lipids and type 2 diabetes. The associations of the genetic variants with lipids were replicated in the Diabetes Care System (n = 5409). Rs4846913-A, in the GALNT2-gene, was associated with decreased apo-CIII0a. This variant was associated with increased high-density lipoprotein cholesterol and decreased triglycerides, while high apo-CIII0a was associated with raised high-density lipoprotein-cholesterol and triglycerides. Rs67086575-G, located in the IFT172-gene, was associated with decreased apo-CIII2 and with hypertriglyceridemia. In line, apo-CIII2 was associated with low triglycerides. On a genome-wide scale, we confirmed that the GALNT2-gene plays a major role i O-glycosylation of apolipoprotein-CIII, with subsequent associations with lipid parameters. We newly identified the IFT172/NRBP1 region, in the literature previously associated with hypertriglyceridemia, as involved in apolipoprotein-CIII sialylation and hypertriglyceridemia. These results link genomics, glycosylation, and lipid metabolism, and represent a key step towards unravelling the importance of O-glycosylation in health and disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Hipertrigliceridemia , Humanos , Apolipoproteína C-III/genética , Apolipoproteínas C/genética , Diabetes Mellitus Tipo 2/genética , Glicosilação , Estudo de Associação Genômica Ampla , Triglicerídeos , HDL-Colesterol , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Transporte Vesicular/genética , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
3.
Glycobiology ; 32(3): 230-238, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939081

RESUMO

Maturity-onset diabetes of the young due to hepatocyte nuclear factor-1 alpha variants (HNF1A-MODY) causes monogenic diabetes. Individuals carrying damaging variants in HNF1A show decreased levels of α1-3,4 fucosylation, as demonstrated on antennary fucosylation of blood plasma N-glycans. The excellent diagnostic performance of this glycan biomarker in blood plasma N-glycans of individuals with HNF1A-MODY has been demonstrated using liquid chromatography methods. Here, we have developed a high-throughput exoglycosidase plate-based assay to measure α1-3,4 fucosylation levels in blood plasma samples. The assay has been optimized and its validity tested using 1000 clinical samples from a cohort of individuals with young-adult onset diabetes including cases with HNF1A-MODY. The α1-3,4 fucosylation levels in blood plasma showed a good differentiating power in identifying cases with damaging HNF1A variants, as demonstrated by receiver operating characteristic curve analysis with the AUC values of 0.87 and 0.95. This study supports future development of a simple diagnostic test to measure this glycan biomarker for application in a clinical setting.


Assuntos
Diabetes Mellitus Tipo 2 , Glicosídeo Hidrolases , Adulto , Biomarcadores , Proteína C-Reativa , Diabetes Mellitus Tipo 2/diagnóstico , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Mutação
4.
Front Chem ; 9: 678883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026735

RESUMO

Apolipoprotein-CIII (apo-CIII) is a glycoprotein involved in lipid metabolism and its levels are associated with cardiovascular disease risk. Apo-CIII sialylation is associated with improved plasma triglyceride levels and its glycosylation may have an effect on the clearance of triglyceride-rich lipoproteins by directing these particles to different metabolic pathways. Large-scale sample cohort studies are required to fully elucidate the role of apo-CIII glycosylation in lipid metabolism and associated cardiovascular disease. In this study, we revisited a high-throughput workflow for the analysis of intact apo-CIII by ultrahigh-resolution MALDI FT-ICR MS. The workflow includes a chemical oxidation step to reduce methionine oxidation heterogeneity and spectrum complexity. Sinapinic acid matrix was used to minimize the loss of sialic acids upon MALDI. MassyTools software was used to standardize and automate MS data processing and quality control. This method was applied on 771 plasma samples from individuals without diabetes allowing for an evaluation of the expression levels of apo-CIII glycoforms against a panel of lipid biomarkers demonstrating the validity of the method. Our study supports the hypothesis that triglyceride clearance may be regulated, or at least strongly influenced by apo-CIII sialylation. Interestingly, the association of apo-CIII glycoforms with triglyceride levels was found to be largely independent of body mass index. Due to its precision and throughput, the new workflow will allow studying the role of apo-CIII in the regulation of lipid metabolism in various disease settings.

5.
Glycoconj J ; 38(3): 375-386, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765222

RESUMO

Antennary fucosylation alterations in plasma glycoproteins have been previously proposed and tested as a biomarker for differentiation of maturity onset diabetes of the young (MODY) patients carrying a functional mutation in the HNF1A gene. Here, we developed a novel LC-based workflow to analyze blood plasma N-glycan fucosylation in 320 diabetes cases with clinical features matching those at risk of HNF1A-MODY. Fucosylation levels measured in two independent research centers by using similar LC-based methods were correlated to evaluate the interlaboratory performance of the biomarker. The interlaboratory study showed good correlation between fucosylation levels measured for the 320 cases in the two centers with the correlation coefficient (r) of up to 0.88 for a single trait A3FG3S2. The improved chromatographic separation allowed the identification of six single glycan traits and a derived antennary fucosylation trait that were able to differentiate individuals carrying pathogenic mutations from benign or no HNF1A mutation cases, as determined by the area under the curve (AUC) of up to 0.94. The excellent (r = 0.88) interlaboratory performance of the glycan biomarker for HNF1A-MODY further supports the development of a clinically relevant diagnostic test measuring antennary fucosylation levels.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Polissacarídeos/sangue , Polissacarídeos/metabolismo , Adulto , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Feminino , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Laboratórios , Masculino , Mutação , Variações Dependentes do Observador , Polissacarídeos/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA