Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Clin Cancer Res ; 23(18): 5339-5348, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28611198

RESUMO

Purpose: Encorafenib, a selective BRAF inhibitor (BRAFi), has a pharmacologic profile that is distinct from that of other clinically active BRAFis. We evaluated encorafenib in a phase I study in patients with BRAFi treatment-naïve and pretreated BRAF-mutant melanoma.Experimental Design: The pharmacologic activity of encorafenib was first characterized preclinically. Encorafenib monotherapy was then tested across a range of once-daily (50-700 mg) or twice-daily (75-150 mg) regimens in a phase I, open-label, dose-escalation and -expansion study in adult patients with histologically confirmed advanced/metastatic BRAF-mutant melanoma. Study objectives were to determine the maximum tolerated dose (MTD) and/or recommended phase II dose (RP2D), characterize the safety and tolerability and pharmacokinetic profile, and assess the preliminary antitumor activity of encorafenib.Results: Preclinical data demonstrated that encorafenib inhibited BRAF V600E kinase activity with a prolonged off-rate and suppressed proliferation and tumor growth of BRAF V600E-mutant melanoma models. In the dose-escalation phase, 54 patients (29 BRAFi-pretreated and 25 BRAFi-naïve) were enrolled. Seven patients in the dose-determining set experienced dose-limiting toxicities. Encorafenib at a dose of 300 mg once daily was declared the RP2D. In the expansion phase, the most common all-cause adverse events were nausea (66%), myalgia (63%), and palmar-plantar erythrodysesthesia (54%). In BRAFi-naïve patients, the overall response rate (ORR) and median progression-free survival (mPFS) were 60% and 12.4 months [95% confidence interval (CI), 7.4-not reached (NR)]. In BRAFi-pretreated patients, the ORR and mPFS were 22% and 1.9 months (95% CI, 0.9-3.7).Conclusions: Once-daily dosing of single-agent encorafenib had a distinct tolerability profile and showed varying antitumor activity across BRAFi-pretreated and BRAFi-naïve patients with advanced/metastatic melanoma. Clin Cancer Res; 23(18); 5339-48. ©2017 AACR.


Assuntos
Antineoplásicos/uso terapêutico , Carbamatos/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Carbamatos/administração & dosagem , Carbamatos/efeitos adversos , Carbamatos/farmacocinética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Monitoramento de Medicamentos , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Dose Máxima Tolerável , Melanoma/mortalidade , Melanoma/patologia , Camundongos , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacocinética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Discov ; 7(6): 610-619, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363909

RESUMO

Preclinical evidence suggests that concomitant BRAF and EGFR inhibition leads to sustained suppression of MAPK signaling and suppressed tumor growth in BRAFV600E colorectal cancer models. Patients with refractory BRAFV600-mutant metastatic CRC (mCRC) were treated with a selective RAF kinase inhibitor (encorafenib) plus a monoclonal antibody targeting EGFR (cetuximab), with (n = 28) or without (n = 26) a PI3Kα inhibitor (alpelisib). The primary objective was to determine the maximum tolerated dose (MTD) or a recommended phase II dose. Dose-limiting toxicities were reported in 3 patients receiving dual treatment and 2 patients receiving triple treatment. The MTD was not reached for either group and the phase II doses were selected as 200 mg encorafenib (both groups) and 300 mg alpelisib. Combinations of cetuximab and encorafenib showed promising clinical activity and tolerability in patients with BRAF-mutant mCRC; confirmed overall response rates of 19% and 18% were observed and median progression-free survival was 3.7 and 4.2 months for the dual- and triple-therapy groups, respectively.Significance: Herein, we demonstrate that dual- (encorafenib plus cetuximab) and triple- (encorafenib plus cetuximab and alpelisib) combination treatments are tolerable and provide promising clinical activity in the difficult-to-treat patient population with BRAF-mutant mCRC. Cancer Discov; 7(6); 610-9. ©2017 AACR.See related commentary by Sundar et al., p. 558This article is highlighted in the In This Issue feature, p. 539.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carbamatos/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Sulfonamidas/uso terapêutico , Tiazóis/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carbamatos/administração & dosagem , Carbamatos/efeitos adversos , Cetuximab/administração & dosagem , Cetuximab/efeitos adversos , Neoplasias Colorretais/genética , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Mutação , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/administração & dosagem , Sulfonamidas/efeitos adversos , Tiazóis/administração & dosagem , Tiazóis/efeitos adversos
3.
J Clin Oncol ; 34(36): 4371-4380, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601554

RESUMO

Purpose AZD1775 is a WEE1 kinase inhibitor targeting G2 checkpoint control, preferentially sensitizing TP53-deficient tumor cells to DNA damage. This phase I study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of oral AZD1775 as monotherapy or in combination with chemotherapy in patients with refractory solid tumors. Patients and Methods In part 1, patients received a single dose of AZD1775 followed by 14 days of observation. In part 2, patients received AZD1775 as a single dose (part 2A) or as five twice per day doses or two once per day doses (part 2B) in combination with one of the following chemotherapy agents: gemcitabine (1,000 mg/m2), cisplatin (75 mg/m2), or carboplatin (area under the curve, 5 mg/mL⋅min). Skin biopsies were collected for pharmacodynamic assessments. TP53 status was determined retrospectively in archival tumor tissue. Results Two hundred two patients were enrolled onto the study, including nine patients in part 1, 43 in part 2A (including eight rollover patients from part 1), and 158 in part 2B. AZD1775 monotherapy given as single dose was well tolerated, and the maximum-tolerated dose was not reached. In the combination regimens, the most common adverse events consisted of fatigue, nausea and vomiting, diarrhea, and hematologic toxicity. The maximum-tolerated doses and biologically effective doses were established for each combination. Target engagement, as a predefined 50% pCDK1 reduction in surrogate tissue, was observed in combination with cisplatin and carboplatin. Of 176 patients evaluable for efficacy, 94 (53%) had stable disease as best response, and 17 (10%) achieved a partial response. The response rate in TP53-mutated patients (n = 19) was 21% compared with 12% in TP53 wild-type patients (n = 33). Conclusion AZD1775 was safe and tolerable as a single agent and in combination with chemotherapy at doses associated with target engagement.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Adulto , Idoso , Análise de Variância , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/administração & dosagem , Carboplatina/efeitos adversos , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Esquema de Medicação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/patologia , Prognóstico , Pirazóis/efeitos adversos , Pirimidinas/efeitos adversos , Pirimidinonas , Medição de Risco , Análise de Sobrevida , Resultado do Tratamento , Gencitabina
4.
Br J Haematol ; 161(5): 688-694, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23573950

RESUMO

Givinostat, a histone-deacetylase inhibitor (HDACi), inhibits proliferation of cells bearing the JAK2 V617F mutation and has shown significant activity with good tolerability in patients with chronic myeloproliferative neoplasms (MPN). In this multicentre, open-label, phase II study, 44 patients with polycythaemia vera (PV), unresponsive to the maximum tolerated doses (MTD) of hydroxycarbamide (HC), were treated with Givinostat (50 or 100 mg/d) in combination with MTD of HC. The European LeukaemiaNet response criteria were used to assess the primary endpoint after 12 weeks of treatment. Complete or partial response was observed in 55% and 50% of patients receiving 50 or 100 mg of Givinostat, respectively. Control of pruritus was observed in 64% and 67% of patients in the 50 and 100 mg groups, respectively. The combination of Givinostat and HC was well tolerated: eight patients (18%) discontinued, four in each treatment arm; grade 3 adverse events were reported in one patient (4·5%) in each treatment arm. The combined use of Givinostat and HC was safe and clinically effective in HC-unresponsive PV patients.


Assuntos
Carbamatos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Hidroxiureia/uso terapêutico , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Policitemia Vera/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Carbamatos/administração & dosagem , Carbamatos/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação , Quimioterapia Combinada , Feminino , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/efeitos adversos , Humanos , Hidroxiureia/administração & dosagem , Hidroxiureia/efeitos adversos , Masculino , Pessoa de Meia-Idade , Inibidores da Síntese de Ácido Nucleico/administração & dosagem , Inibidores da Síntese de Ácido Nucleico/efeitos adversos , Falha de Tratamento , Resultado do Tratamento
5.
Neurosci Lett ; 534: 316-21, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23262078

RESUMO

Molecular targeted therapy can potentially provide more effective treatment for patients with high-grade gliomas. Notch and Akt are notable target molecules as they play important roles in a variety of cellular processes, such as regeneration, differentiation, proliferation, migration, and invasion. Here, we assessed the therapeutic possibility of inhibiting Notch and Akt in gliomas using the clinically available, selective small molecule inhibitors MRK003 and MK-2206. We evaluated their efficacy individually and as a combination therapy in U251 and U87 glioma cell lines. We confirmed that MK-2206 effectively inhibits Akt phosphorylation in a dose-dependent manner, whereas MRK003 inhibits Notch signaling and Akt phosphorylation. Both MRK003 and MK-2206 significantly inhibited cell growth, migration, and invasion in a dose-dependent manner. Akt dephosphorylation was enhanced by combination therapy with MRK003 and MK-2206. However, the effect of combination treatment did not exceed that of MK-2206 monotherapy in proliferation assay. Inhibition of invasion, further enhanced by combination therapy, correlated with increased Akt inactivation. In summary, combination therapy with MRK003 and MK-2206 may be effective for inhibiting invasion but not proliferation.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Receptores Notch/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Óxidos S-Cíclicos/farmacologia , Interações Medicamentosas , Glioma/tratamento farmacológico , Glioma/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Terapia de Alvo Molecular , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiadiazóis/farmacologia
6.
J Clin Oncol ; 30(19): 2307-13, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22547604

RESUMO

PURPOSE: Aberrant Notch signaling has been implicated in the pathogenesis of many human cancers. MK-0752 is a potent, oral inhibitor of γ-secretase, an enzyme required for Notch pathway activation. Safety, maximum-tolerated dose, pharmacokinetics (PKs), pharmacodynamics, and preliminary antitumor efficacy were assessed in a phase I study of MK-0752. PATIENTS AND METHODS: MK-0752 was administered in three different schedules to patients with advanced solid tumors. Hair follicles were collected at higher dose levels to assess a gene signature of Notch inhibition. RESULTS: Of 103 patients who received MK-0752, 21 patients received a continuous once-daily dosing at 450 and 600 mg; 17 were dosed on an intermittent schedule of 3 of 7 days at 450 and 600 mg; and 65 were dosed once per week at 600, 900, 1,200, 1,500, 1,800, 2,400, 3,200, and 4,200 mg. The most common drug-related toxicities were diarrhea, nausea, vomiting, and fatigue. PKs (area under the concentration-time curve and maximum measured plasma concentration) increased in a less than dose proportional manner, with a half-life of approximately 15 hours. Significant inhibition of Notch signaling was observed with the 1,800- to 4,200-mg weekly dose levels, confirming target engagement at those doses. One objective complete response and an additional 10 patients with stable disease longer than 4 months were observed among patients with high-grade gliomas. CONCLUSION: MK-0752 toxicity was schedule dependent. Weekly dosing was generally well tolerated and resulted in strong modulation of a Notch gene signature. Clinical benefit was observed, and rational combination trials are currently ongoing to maximize clinical benefit with this novel agent.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Propionatos/farmacologia , Propionatos/farmacocinética , Sulfonas/farmacologia , Sulfonas/farmacocinética , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Derivados de Benzeno , Estudos de Coortes , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Propionatos/efeitos adversos , Sulfonas/efeitos adversos , Resultado do Tratamento
7.
J Exp Med ; 209(3): 437-44, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22351932

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease that is refractory to medical intervention. Notch pathway antagonism has been shown to prevent pancreatic preneoplasia progression in mouse models, but potential benefits in the setting of an established PDA tumor have not been established. We demonstrate that the gamma secretase inhibitor MRK003 effectively inhibits intratumoral Notch signaling in the KPC mouse model of advanced PDA. Although MRK003 monotherapy fails to extend the lifespan of KPC mice, the combination of MRK003 with the chemotherapeutic gemcitabine prolongs survival. Combination treatment kills tumor endothelial cells and synergistically promotes widespread hypoxic necrosis. These results indicate that the paucivascular nature of PDA can be exploited as a therapeutic vulnerability, and the dual targeting of the tumor endothelium and neoplastic cells by gamma secretase inhibition constitutes a rationale for clinical translation.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Óxidos S-Cíclicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Tiadiazóis/farmacologia , Animais , Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Óxidos S-Cíclicos/administração & dosagem , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Sinergismo Farmacológico , Quimioterapia Combinada , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Hipóxia/induzido quimicamente , Camundongos , Camundongos Mutantes , Necrose , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiadiazóis/administração & dosagem , Pesquisa Translacional Biomédica , Gencitabina
8.
Blood ; 119(12): 2863-72, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22267604

RESUMO

To identify rational therapeutic combinations with cytarabine (Ara-C), we developed a high-throughput, small-interference RNA (siRNA) platform for myeloid leukemia cells. Of 572 kinases individually silenced in combination with Ara-C, silencing of 10 (1.7%) and 8 (1.4%) kinases strongly increased Ara-C activity in TF-1 and THP-1 cells, respectively. The strongest molecular concepts emerged around kinases involved in cell-cycle checkpoints and DNA-damage repair. In confirmatory siRNA assays, inhibition of WEE1 resulted in more potent and universal sensitization across myeloid cell lines than siRNA inhibition of PKMYT1, CHEK1, or ATR. Treatment of 8 acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myeloid leukemia (CML) cell lines with commercial and the first-in-class clinical WEE1 kinase inhibitor MK1775 confirmed sensitization to Ara-C up to 97-fold. Ex vivo, adding MK1775 substantially reduced viability in 13 of 14 AML, CML, and myelodysplastic syndrome patient samples compared with Ara-C alone. Maximum sensitization occurred at lower to moderate concentrations of both drugs. Induction of apoptosis was increased using a combination of Ara-C and MK1775 compared with using either drug alone. WEE1 is expressed in primary AML, ALL, and CML specimens. Data from this first siRNA-kinome sensitizer screen suggests that inhibiting WEE1 in combination with Ara-C is a rational combination for the treatment of myeloid and lymphoid leukemias.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Citarabina/farmacologia , Leucemia Mieloide/enzimologia , Proteínas Nucleares/metabolismo , Fosfotransferases/análise , Proteínas Tirosina Quinases/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Fosfotransferases/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Mol Cancer Ther ; 10(12): 2405-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21992793

RESUMO

The purpose of this study was to determine the capacity of MK-1775, a potent Wee-1 inhibitor, to abrogate the radiation-induced G(2) checkpoint arrest and modulate radiosensitivity in glioblastoma cell models and normal human astrocytes. The radiation-induced checkpoint response of established glioblastoma cell lines, glioblastoma neural stem (GNS) cells, and astrocytes were determined in vitro by flow cytometry and in vivo by mitosis-specific staining using immunohistochemistry. Mechanisms underlying MK-1775 radiosensitization were determined by mitotic catastrophe and γH2AX expression. Radiosensitivity was determined in vitro by the clonogenic assay and in vivo by tumor growth delay. MK-1775 abrogated the radiation-induced G(2) checkpoint and enhanced radiosensitivity in established glioblastoma cell lines in vitro and in vivo, without modulating radiation response in normal human astrocytes. MK-1775 appeared to attenuate the early-phase of the G(2) checkpoint arrest in GNS cell lines, although the arrest was not sustained and did not lead to increased radiosensitivity. These results show that MK-1775 can selectively enhance radiosensitivity in established glioblastoma cell lines. Further work is required to determine the role Wee-1 plays in checkpoint activation of GNS cells.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Glioblastoma/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinonas , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Clin Oncol ; 29(26): 3529-34, 2011 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-21825264

RESUMO

PURPOSE: To estimate the maximum-tolerated dose (MTD), describe dose-limiting toxicities (DLTs), and characterize pharmacokinetic properties of MK-0752, a gamma secretase inhibitor, in children with refractory or recurrent CNS malignancies. PATIENTS AND METHODS: MK-0752 was administered once daily for 3 consecutive days of every 7 days at escalating dosages starting at 200 mg/m(2). The modified continual reassessment method was used to estimate the MTD. A course was 28 days in duration. Pharmacokinetic analysis was performed during the first course. Expression of NOTCH and hairy enhancer of split (HES) proteins was assessed in peripheral-blood mononuclear cells (PBMCs) before and following treatment with MK-0752. RESULTS: Twenty-three eligible patients were enrolled: 10 males (median age, 8.1 years; range, 2.6 to 17.7 years) with diagnoses of brainstem glioma (n = 6), ependymoma (n = 8), medulloblastoma/primitive neuroectodermal tumor (n = 4), glioblastoma multiforme (n = 2), atypical teratoid/rhabdoid tumor (n = 1), malignant glioma (n = 1), and choroid plexus carcinoma, (n = 1). Seventeen patients were fully evaluable for toxicity. No DLTs occurred in the three patients enrolled at 200 mg/m(2)/dose. At 260 mg/m(2)/dose, DLTs occurred in two of six patients, both of whom experienced grade 3 ALT and AST. There were no grade 4 toxicities; non-dose-limiting grade 3 toxicities included hypokalemia and lymphopenia. Population pharmacokinetic values (% coefficient of variation) for MK-0752 were apparent oral clearance, 0.444 (38%) L/h/m(2); apparent volume of distribution, 7.36 (24%) L/m(2); and k(a), 0.358 (99%) hr(-1). CONCLUSION: MK-0752 is well-tolerated in children with recurrent CNS malignancies. The recommended phase II dose using the 3 days on followed by 4 days off schedule is 260 mg/m(2)/dose once daily.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Propionatos/uso terapêutico , Sulfonas/uso terapêutico , Adolescente , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Derivados de Benzeno , Criança , Pré-Escolar , Feminino , Proteínas de Homeodomínio/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Dose Máxima Tolerável , Propionatos/efeitos adversos , Propionatos/farmacocinética , Receptor Notch1/efeitos dos fármacos , Receptor Notch1/metabolismo , Recidiva , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Sulfonas/efeitos adversos , Sulfonas/farmacocinética , Fatores de Transcrição HES-1
11.
Clin Cancer Res ; 17(9): 2799-806, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21389100

RESUMO

PURPOSE: Investigate the efficacy and pharmacodynamic effects of MK-1775, a potent Wee1 inhibitor, in both monotherapy and in combination with gemcitabine (GEM) using a panel of p53-deficient and p53 wild-type human pancreatic cancer xenografts. EXPERIMENTAL DESIGN: Nine individual patient-derived pancreatic cancer xenografts (6 with p53-deficient and 3 with p53 wild-type status) from the PancXenoBank collection at Johns Hopkins were treated with MK-1775, GEM, or GEM followed 24 hour later by MK-1775, for 4 weeks. Tumor growth rate/regressions were calculated on day 28. Target modulation was assessed by Western blotting and immunohistochemistry. RESULTS: MK-1775 treatment led to the inhibition of Wee1 kinase and reduced inhibitory phosphorylation of its substrate Cdc2. MK-1775, when dosed with GEM, abrogated the checkpoint arrest to promote mitotic entry and facilitated tumor cell death as compared to control and GEM-treated tumors. MK-1775 monotherapy did not induce tumor regressions. However, the combination of GEM with MK-1775 produced robust antitumor activity and remarkably enhanced tumor regression response (4.01-fold) compared to GEM treatment in p53-deficient tumors. Tumor regrowth curves plotted after the drug treatment period suggest that the effect of the combination therapy is longer-lasting than that of GEM. None of the agents produced tumor regressions in p53 wild-type xenografts. CONCLUSIONS: These results indicate that MK-1775 selectively synergizes with GEM to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Progressão da Doença , Sinergismo Farmacológico , Feminino , Genes p53 , Humanos , Camundongos , Camundongos Nus , Mutação/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas Nucleares/antagonistas & inibidores , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirimidinonas , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
12.
Int J Cancer ; 126(5): 1155-65, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19728339

RESUMO

To reveal molecular drivers of glioma invasion, two distinct glioblastoma (GBM) cell phenotypes (invading cells and tumor core cells) were collected from 19 GBM specimens using laser capture microdissection. Isolated RNA underwent whole human genome expression profiling to identify differentially expressed genes. Pathway enrichment analysis highlighted the bidirectional receptor/ligand tyrosine kinase system, EphB/ephrin-B, as the most tightly linked system to the invading cell phenotype. Clinical relevance of ephrin-B genes was confirmed in a clinically annotated expression data set of 195 brain biopsy specimens. Levels of ephrin-B1 and -B2 mRNA were significantly higher in GBM (n = 82) than in normal brain (n = 24). Kaplan-Meier analysis demonstrated ephrin-B2, but not ephrin-B1, expression levels were significantly associated with short term survival in malignant astrocytomas (n = 97, p = 0.016). In human brain tumor specimens, the production and phosphorylation of ephrin-B2 were high in GBM. Immunohistochemistry demonstrated ephrin-B2 localization primarily in GBM cells but not in normal brain. A highly invasive glioma cell line, U87, expressed high levels of ephrin-B2 compared with relatively less invasive cell lines. Treatment with EphB2/Fc chimera further enhanced migration and invasion of U87 cells, whereas treatment with an ephrin-B2 blocking antibody significantly slowed migration and invasion. Forced expression of ephrin-B2 in the U251 cell line stimulated migration and invasion in vitro and ex vivo, concomitant with tyrosine phosphorylation of ephrin-B2. These results demonstrate that high expression of ephrin-B2 is a strong predictor of short-term survival and that ephrin-B2 plays a critical role in glioma invasion rendering this signaling pathway as a potential therapeutic target.


Assuntos
Neoplasias Encefálicas/metabolismo , Efrina-B2/metabolismo , Glioma/metabolismo , Transdução de Sinais/fisiologia , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Movimento Celular , Células Cultivadas , Efrina-B1/genética , Efrina-B1/metabolismo , Efrina-B2/genética , Expressão Gênica , Perfilação da Expressão Gênica , Glioma/genética , Glioma/mortalidade , Humanos , Imuno-Histoquímica , Imunoprecipitação , Estimativa de Kaplan-Meier , Lasers , Ligantes , Microdissecção , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Prognóstico , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
13.
Cancer Res ; 69(23): 8949-57, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19903844

RESUMO

Notch pathway signaling plays a fundamental role in normal biological processes and is frequently deregulated in many cancers. Although several hypotheses regarding cancer subpopulations most likely to respond to therapies targeting the Notch pathway have been proposed, clinical utility of these predictive markers has not been shown. To understand the molecular basis of gamma-secretase inhibitor (GSI) sensitivity in breast cancer, we undertook an unbiased, de novo responder identification study using a novel genetically engineered in vivo breast cancer model. We show that tumors arising from this model are heterogeneous on the levels of gene expression, histopathology, growth rate, expression of Notch pathway markers, and response to GSI treatment. In addition, GSI treatment of this model was associated with inhibition of Hes1 and proliferation markers, indicating that GSI treatment inhibits Notch signaling. We then identified a pretreatment gene expression signature comprising 768 genes that is significantly associated with in vivo GSI efficacy across 99 tumor lines. Pathway analysis showed that the GSI responder signature is enriched for Notch pathway components and inflammation/immune-related genes. These data show the power of this novel in vivo model system for the discovery of biomarkers predictive of response to targeted therapies, and provide a basis for the identification of human breast cancers most likely to be sensitive to GSI treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Óxidos S-Cíclicos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/enzimologia , Tiadiazóis/administração & dosagem , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Esquema de Medicação , Redes Reguladoras de Genes , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
BMC Genomics ; 9: 54, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18230158

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. RESULTS: Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA) revealed two discriminating patterns between migrating and stationary glioma cells: i) global down-regulation and ii) global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF). siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. CONCLUSION: Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected candidates were validated clinically at the transcriptional and translational levels as well as through functional assays thereby underscoring the fidelity of the discovery algorithm.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Movimento Celular/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reprodutibilidade dos Testes , Taxa de Sobrevida
15.
J Neurooncol ; 86(3): 297-309, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17928955

RESUMO

Glioblastoma multiforme (GBM) is inherently invasive, and it is from the invasive cell population that the tumor recurs. The GBM invasion transcriptome reveals over-expression of various autocrine factors that could act as motility drivers, such as autotaxin (ATX). Some of these factors could also have paracrine roles, modulating the behavior of cells in the peri-tumoral brain parenchyma. ATX generates lysophosphatidic acid (LPA), which signals through LPA receptors expressed by GBM as well as in astrocytes, oligodendrocytes (ODC) and microglia; their activation manifest cell specific effects. ATX stimulates invasion of GBM cells in vitro and ex vivo invasion assays. ATX activity enhances GBM adhesion in cells expressing the LPA1 receptor, as well as stimulating rac activation. GBM secreted ATX can also have paracrine effects: ATX activity results in reduced ODC adhesion. ODC monolayer invasion showed that U87 and U251 GBM cells expressing ATX invaded through an ODC monolayer significantly more than cells depleted of ATX or cells expressing inactive ATX, suggesting that GBM cells secreting ATX find ODCs less of a barrier than cells that do not express ATX. Secreted factors that drive GBM invasion can have autocrine and paracrine roles; one stimulates GBM motility and the other results in ODC dis-adhesion.


Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Complexos Multienzimáticos/metabolismo , Fosfodiesterase I/metabolismo , Pirofosfatases/metabolismo , Animais , Encéfalo/fisiopatologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Lipopolissacarídeos/farmacologia , Complexos Multienzimáticos/genética , Invasividade Neoplásica , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/secundário , Fosfodiesterase I/genética , Diester Fosfórico Hidrolases , Pirofosfatases/genética , RNA Interferente Pequeno/farmacologia , Ratos , Fatores de Tempo , Transplantes , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
J Natl Cancer Inst ; 99(21): 1583-93, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17971532

RESUMO

Invasion is a defining hallmark of glioblastoma multiforme, just as metastasis characterizes other high-grade tumors. Glial tumors invariably recur due to the regrowth of invasive cells, which are unaffected by standard treatment modalities. Drivers of glioma invasion include autocrine signals propagated by secreted factors that signal through receptors on the tumor. These secreted factors are able to diffuse through the peritumoral stroma, thereby influencing parenchymal cells that surround the tumor mass. Here we describe various autocrine motility factors that are expressed by invasive glioma cells and explore the effects that they may have on normal cells present in the path of invasion. Conversely, normal brain parenchymal cells secrete ligands that can stimulate receptors on invasive glioma cells and potentially facilitate glioma invasion or create a permissive microenvironment for malignant progression. Parallel observations have been made for solid tumors of epithelial origin, in which parenchymal and stromal cells either support or suppress tumor invasion. Most autocrine and paracrine interactions involved in glioma invasion constitute known signaling systems in stages of central nervous system development that involve the migration of precursor cells that populate the developing brain. Key paracrine interactions between glioma cells and the brain microenvironment can influence glioma pathobiology and therefore contribute to its poor prognosis. Current therapies for glioma that could have an impact on paracrine communication between tumors and normal cells are discussed. We suggest that cells in the normal brain parenchyma be considered as potential targets for adjuvant therapies to control glioma growth because such cells are less likely to develop resistance than glioma cells.


Assuntos
Comunicação Autócrina , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Comunicação Parácrina , Animais , Antineoplásicos/farmacologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrocitoma/metabolismo , Astrocitoma/patologia , Comunicação Autócrina/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/irrigação sanguínea , Glioma/tratamento farmacológico , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Comunicação Parácrina/efeitos dos fármacos
17.
Appl Opt ; 46(22): 5110-8, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17676121

RESUMO

To gain insight into brain tumor invasion, experiments are conducted on multicellular tumor spheroids grown in collagen gel. Typically, a radius of invasion is reported, which is obtained by human measurement. We present a simple, heuristic algorithm for automated invasive radii estimation (AIRE) that uses local fluctuations of the image intensity. We then derive an analytical expression relating the image graininess to the cell density for a model imaging system. The result agrees with the experiment up to a multiplicative constant and thus describes a novel method for estimating the cell density from bright-field images.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Óptica e Fotônica , Esferoides Celulares/patologia , Células Tumorais Cultivadas/patologia , Algoritmos , Biópsia , Contagem de Células , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Modelos Estatísticos , Invasividade Neoplásica
18.
Mol Cancer Ther ; 6(4): 1212-22, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17406030

RESUMO

Although astrocytic brain tumors do not metastasize systemically, during tumorigenesis glioma cells adopt an invasive phenotype that is poorly targeted by conventional therapies; hence, glioma patients die of recurrence from the locally invasive tumor population. Our work is aimed at identifying and validating novel therapeutic targets and biomarkers in invasive human gliomas. Transcriptomes of invasive glioma cells relative to stationary cognates were produced from a three-dimensional spheroid in vitro invasion assay by laser capture microdissection and whole human genome expression microarrays. Qualitative differential expression of candidate invasion genes was confirmed by quantitative reverse transcription-PCR, clinically by immunohistochemistry on tissue microarray, by immunoblotting on surgical specimens, and on two independent gene expression data sets of glial tumors. Cell-based assays and ex vivo brain slice invasion studies were used for functional validation. We identify mitogen-activated protein kinase (MAPK) kinase 3 (MKK3) as a key activator of p38 MAPK in glioma; MKK3 activation is strongly correlated with p38 activation in vitro and in vivo. We further report that these members of the MAPK family are strong promoters of tumor invasion, progression, and poor patient survival. Inhibition of either candidate leads to significantly reduced glioma invasiveness in vitro. Consistent with the concept of synthetic lethality, we show that inhibition of invasion by interference with these genes greatly sensitizes arrested glioma cells to cytotoxic therapies. Our findings therefore argue that interference with MKK3 signaling through a novel treatment combination of p38 inhibitor plus temozolomide heightens the vulnerability of glioma to chemotherapy.


Assuntos
Glioma/enzimologia , Glioma/patologia , MAP Quinase Quinase 3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrocitoma/enzimologia , Astrocitoma/patologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Glioma/diagnóstico , Glioma/genética , Humanos , MAP Quinase Quinase 3/antagonistas & inibidores , MAP Quinase Quinase 3/genética , Masculino , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Análise de Sobrevida , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
Biophys J ; 92(1): 356-65, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17040992

RESUMO

Glioblastoma, the most malignant form of brain cancer, is responsible for 23% of primary brain tumors and has extremely poor outcome. Confounding the clinical management of glioblastomas is the extreme local invasiveness of these cancer cells. The mechanisms that govern invasion are poorly understood. To gain insight into glioblastoma invasion, we conducted experiments on the patterns of growth and dispersion of U87 glioblastoma tumor spheroids in a three-dimensional collagen gel. We studied two different cell lines, one with a mutation to the EGFR (U87DeltaEGFR) that is associated with increased malignancy, and one with an endogenous (wild-type) receptor (U87WT). We developed a continuum mathematical model of the dispersion behaviors with the aim of identifying and characterizing discrete cellular mechanisms underlying invasive cell motility. The mathematical model quantitatively reproduces the experimental data, and indicates that the U87WT invasive cells have a stronger directional motility bias away from the spheroid center as well as a faster rate of cell shedding compared to the U87DeltaEGFR cells. The model suggests that differences in tumor cell dispersion may be due to differences in the chemical factors produced by cells, differences in how the two cell lines remodel the gel, or different cell-cell adhesion characteristics.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Invasividade Neoplásica , Esferoides Celulares/metabolismo , Neoplasias Encefálicas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Colágeno/química , Receptores ErbB/química , Glioblastoma/metabolismo , Humanos , Modelos Estatísticos , Modelos Teóricos , Mutação , Fatores de Tempo , Células Tumorais Cultivadas
20.
Acta Biotheor ; 53(3): 181-90, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16329007

RESUMO

Highly malignant neuroepithelial tumors are known for their extensive tissue invasion. Investigating the relationship between their spatial behavior and temporal patterns by employing detrended fluctuation analysis (DFA), we report here that faster glioma cell motility is accompanied by both greater predictability of the cells' migration velocity and concomitantly, more directionality in the cells' migration paths. Implications of this finding for both experimental and clinical cancer research are discussed.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Glioma/patologia , Invasividade Neoplásica/patologia , Células Tumorais Cultivadas/fisiologia , Aceleração , Linhagem Celular Tumoral , Humanos , Modelos Lineares , Orientação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA