Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Elife ; 112022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471146

RESUMO

Assembly of transcriptomes encoding unique neuronal identities requires selective accessibility of transcription factors to cis-regulatory sequences in nucleosome-embedded postmitotic chromatin. Yet, the mechanisms controlling postmitotic neuronal chromatin accessibility are poorly understood. Here, we show that unique distal enhancers define the Pet1 neuron lineage that generates serotonin (5-HT) neurons in mice. Heterogeneous single-cell chromatin landscapes are established early in postmitotic Pet1 neurons and reveal the putative regulatory programs driving Pet1 neuron subtype identities. Distal enhancer accessibility is highly dynamic as Pet1 neurons mature, suggesting the existence of regulatory factors that reorganize postmitotic neuronal chromatin. We find that Pet1 and Lmx1b control chromatin accessibility to select Pet1-lineage-specific enhancers for 5-HT neurotransmission. Additionally, these factors are required to maintain chromatin accessibility during early maturation suggesting that postmitotic neuronal open chromatin is unstable and requires continuous regulatory input. Together, our findings reveal postmitotic transcription factors that reorganize accessible chromatin for neuron specialization.


Assuntos
Cromatina , Serotonina , Animais , Camundongos , Neurônios/fisiologia , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética
2.
Cell Rep ; 39(3): 110711, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443166

RESUMO

Neurons must function for decades of life, but how these non-dividing cells are preserved is poorly understood. Using mouse serotonin (5-HT) neurons as a model, we report an adult-stage transcriptional program specialized to ensure the preservation of neuronal connectivity. We uncover a switch in Lmx1b and Pet1 transcription factor function from controlling embryonic axonal growth to sustaining a transcriptomic signature of 5-HT connectivity comprising functionally diverse synaptic and axonal genes. Adult-stage deficiency of Lmx1b and Pet1 causes slowly progressing degeneration of 5-HT synapses and axons, increased susceptibility of 5-HT axons to neurotoxic injury, and abnormal stress responses. Axon degeneration occurs in a die back pattern and is accompanied by accumulation of α-synuclein and amyloid precursor protein in spheroids and mitochondrial fragmentation without cell body loss. Our findings suggest that neuronal connectivity is transcriptionally protected by maintenance of connectivity transcriptomes; progressive decay of such transcriptomes may contribute to age-related diseases of brain circuitry.


Assuntos
Serotonina , Fatores de Transcrição , Animais , Axônios/metabolismo , Camundongos , Neurônios/metabolismo , Serotonina/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo
4.
Commun Biol ; 2: 373, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31633064

RESUMO

Aggressive behavior in our modern, civilized society is often counterproductive and destructive. Identifying specific proteins involved in the disease can serve as therapeutic targets for treating aggression. Here, we found that overexpression of RGS2 in explicitly serotonergic neurons augments male aggression in control mice and rescues male aggression in Rgs2-/- mice, while anxiety is not affected. The aggressive behavior is directly correlated to the immediate early gene c-fos induction in the dorsal raphe nuclei and ventrolateral part of the ventromedial nucleus hypothalamus, to an increase in spontaneous firing in serotonergic neurons and to a reduction in the modulatory action of Gi/o and Gq/11 coupled 5HT and adrenergic receptors in serotonergic neurons of Rgs2-expressing mice. Collectively, these findings specifically identify that RGS2 expression in serotonergic neurons is sufficient to drive male aggression in mice and as a potential therapeutic target for treating aggression.


Assuntos
Agressão/fisiologia , Proteínas RGS/metabolismo , Neurônios Serotoninérgicos/metabolismo , Potenciais de Ação , Animais , Ansiedade/metabolismo , Cálcio/metabolismo , Células Cultivadas , Depressão/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas RGS/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
5.
Elife ; 82019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31355748

RESUMO

Formation of long-range axons occurs over multiple stages of morphological maturation. However, the intrinsic transcriptional mechanisms that temporally control different stages of axon projection development are unknown. Here, we addressed this question by studying the formation of mouse serotonin (5-HT) axons, the exemplar of long-range profusely arborized axon architectures. We report that LIM homeodomain factor 1b (Lmx1b)-deficient 5-HT neurons fail to generate axonal projections to the forebrain and spinal cord. Stage-specific targeting demonstrates that Lmx1b is required at successive stages to control 5-HT axon primary outgrowth, selective routing, and terminal arborization. We show a Lmx1b→Pet1 regulatory cascade is temporally required for 5-HT arborization and upregulation of the 5-HT axon arborization gene, Protocadherin-alphac2, during postnatal development of forebrain 5-HT axons. Our findings identify a temporal regulatory mechanism in which a single continuously expressed transcription factor functions at successive stages to orchestrate the progressive development of long-range axon architectures enabling expansive neuromodulation.


Assuntos
Axônios/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Neurônios Serotoninérgicos/fisiologia , Fatores de Transcrição/metabolismo , Animais , Perfilação da Expressão Gênica , Proteínas com Homeodomínio LIM/deficiência , Camundongos , Prosencéfalo/citologia , Medula Espinal/citologia , Fatores de Transcrição/deficiência
6.
Nat Commun ; 10(1): 350, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664643

RESUMO

Central serotonin (5-HT) orchestrates myriad cognitive processes and lies at the core of many stress-related psychiatric illnesses. However, the basic relationship between its brain-wide axonal projections and functional dynamics is not known. Here we combine optogenetics and fMRI to produce a brain-wide 5-HT evoked functional map. We find that DRN photostimulation leads to an increase in the hemodynamic response in the DRN itself, while projection areas predominately exhibit a reduction of cerebral blood volume mirrored by suppression of cortical delta oscillations. We find that the regional distribution of post-synaptically expressed 5-HT receptors better correlates with DRN 5-HT functional connectivity than anatomical projections. Our work suggests that neuroarchitecture is not the primary determinant of function for the DRN 5-HT. With respect to two 5-HT elevating stimuli, we find that acute stress leads to circuit-wide blunting of the DRN output, while the SSRI fluoxetine noticeably enhances DRN functional connectivity. These data provide fundamental insight into the brain-wide functional dynamics of the 5-HT projection system.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Núcleo Dorsal da Rafe/diagnóstico por imagem , Fluoxetina/farmacologia , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Estresse Psicológico/metabolismo , Animais , Mapeamento Encefálico/métodos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/metabolismo , Núcleo Dorsal da Rafe/fisiopatologia , Potenciais Evocados Visuais/efeitos dos fármacos , Feminino , Imobilização , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Estimulação Luminosa , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/fisiopatologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-29072810

RESUMO

The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development.


Assuntos
Neurogênese , Neurônios Serotoninérgicos/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neurônios Serotoninérgicos/classificação , Neurônios Serotoninérgicos/metabolismo
8.
Elife ; 62017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29087295

RESUMO

Prader-Willi syndrome (PWS) is a genetic neurodevelopmental disorder that presents with hypotonia and respiratory distress in neonates. The Necdin-deficient mouse is the only model that reproduces the respiratory phenotype of PWS (central apnea and blunted response to respiratory challenges). Here, we report that Necdin deletion disturbs the migration of serotonin (5-HT) neuronal precursors, leading to altered global serotonergic neuroarchitecture and increased spontaneous firing of 5-HT neurons. We show an increased expression and activity of 5-HT Transporter (SERT/Slc6a4) in 5-HT neurons leading to an increase of 5-HT uptake. In Necdin-KO pups, the genetic deletion of Slc6a4 or treatment with Fluoxetine, a 5-HT reuptake inhibitor, restored normal breathing. Unexpectedly, Fluoxetine administration was associated with respiratory side effects in wild-type animals. Overall, our results demonstrate that an increase of SERT activity is sufficient to cause the apneas in Necdin-KO pups, and that fluoxetine may offer therapeutic benefits to PWS patients with respiratory complications.


Assuntos
Potenciais de Ação , Apneia/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Síndrome de Prader-Willi/fisiopatologia , Neurônios Serotoninérgicos/patologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Modelos Animais de Doenças , Deleção de Genes , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas Nucleares/deficiência , Serotonina/metabolismo
9.
Front Cell Neurosci ; 11: 215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769770

RESUMO

The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons.

10.
eNeuro ; 3(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27896310

RESUMO

The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 (Tph2), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2-targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.


Assuntos
Aprendizagem por Discriminação/fisiologia , Percepção Olfatória/fisiologia , Prosencéfalo/metabolismo , Reversão de Aprendizagem/fisiologia , Serotonina/biossíntese , Transmissão Sináptica/fisiologia , Animais , Peso Corporal , Discriminação Psicológica/fisiologia , Ingestão de Líquidos/fisiologia , Água Potável , Função Executiva/fisiologia , Inibição Psicológica , Masculino , Camundongos Transgênicos , Atividade Motora/fisiologia , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
11.
J Neurosci ; 36(38): 9828-42, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27656022

RESUMO

UNLABELLED: Serotonin (5-HT) is a crucial neuromodulator linked to many psychiatric disorders. However, after more than 60 years of study, its role in behavior remains poorly understood, in part because of a lack of methods to target 5-HT synthesis specifically in the adult brain. Here, we have developed a genetic approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system by stereotaxic injection of an adeno-associated virus expressing Cre recombinase (AAV-Cre) into the midbrain/pons of mice carrying a loxP-conditional tryptophan hydroxylase 2 (Tph2) allele. We investigated the behavioral effects of deficient brain 5-HT synthesis and discovered a unique composite phenotype. Surprisingly, adult 5-HT deficiency did not affect anxiety-like behavior, but resulted in a robust hyperactivity phenotype in novel and home cage environments. Moreover, loss of 5-HT led to an altered pattern of circadian behavior characterized by an advance in the onset and a delay in the offset of daily activity, thus revealing a requirement for adult 5-HT in the control of daily activity patterns. Notably, after normalizing for hyperactivity, we found that the normal prolonged break in nocturnal activity (siesta), a period of rapid eye movement (REM) and non-REM sleep, was absent in all animals in which 5-HT deficiency was verified. Our findings identify adult 5-HT as a requirement for siestas, implicate adult 5-HT in sleep-wake homeostasis, and highlight the importance of our adult-specific 5-HT-synthesis-targeting approach in understanding 5-HT's role in controlling behavior. SIGNIFICANCE STATEMENT: Serotonin (5-HT) is a crucial neuromodulator, yet its role in behavior remains poorly understood, in part because of a lack of methods to target specifically adult brain 5-HT synthesis. We developed an approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system. Using this technique, we discovered that adult 5-HT deficiency led to a novel compound phenotype consisting of hyperactivity, disrupted circadian behavior patterns, and elimination of siestas, a period of increased sleep during the active phase. These findings highlight the importance of our approach in understanding 5-HT's role in behavior, especially in controlling activity levels, circadian behavior, and sleep-wake homeostasis, behaviors that are disrupted in many psychiatric disorders such as attention deficit hyperactivity disorder.


Assuntos
Encéfalo/metabolismo , Transtornos Cronobiológicos/genética , Proteínas de Fluorescência Verde/deficiência , Hipercinese/genética , Parassonias/genética , Serotonina/deficiência , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Transtornos Cronobiológicos/patologia , Comportamento Exploratório , Feminino , Proteínas de Fluorescência Verde/genética , Hipercinese/patologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Transdução Genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
12.
J Neurosci ; 36(5): 1758-74, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843655

RESUMO

Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known about the regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26 transformation-specific) factor is continuously expressed in serotonin (5-HT) neurons and initially acts in postmitotic precursors to control acquisition of 5-HT transmitter identity. Using a combination of RNA sequencing, electrophysiology, and conditional targeting approaches, we determined gene expression patterns in maturing flow-sorted 5-HT neurons and the temporal requirements for Pet-1 in shaping these patterns for functional maturation of mouse 5-HT neurons. We report a profound disruption of postmitotic expression trajectories in Pet-1(-/-) neurons, which prevented postnatal maturation of 5-HT neuron passive and active intrinsic membrane properties, G-protein signaling, and synaptic responses to glutamatergic, lysophosphatidic, and adrenergic agonists. Unexpectedly, conditional targeting revealed a postnatal stage-specific switch in Pet-1 targets from 5-HT synthesis genes to transmitter receptor genes required for afferent modulation of 5-HT neuron excitability. Five-HT1a autoreceptor expression depended transiently on Pet-1, thus revealing an early postnatal sensitive period for control of 5-HT excitability genes. Chromatin immunoprecipitation followed by sequencing revealed that Pet-1 regulates 5-HT neuron maturation through direct gene activation and repression. Moreover, Pet-1 directly regulates the 5-HT neuron maturation factor Engrailed 1, which suggests Pet-1 orchestrates maturation through secondary postmitotic regulatory factors. The early postnatal switch in Pet-1 targets uncovers a distinct neonatal stage-specific function for Pet-1, during which it promotes maturation of 5-HT neuron excitability. SIGNIFICANCE STATEMENT: The regulatory mechanisms that control functional maturation of neurons are poorly understood. We show that in addition to inducing brain serotonin (5-HT) synthesis and reuptake, the Pet-1 ETS (E26 transformation-specific) factor subsequently globally coordinates postmitotic expression trajectories of genes necessary for maturation of 5-HT neuron excitability. Further, Pet-1 switches its transcriptional targets as 5-HT neurons mature from 5-HT synthesis genes to G-protein-coupled receptors, which are necessary for afferent synaptic modulation of 5-HT neuron excitability. Our findings uncover gene-specific switching of downstream targets as a previously unrecognized regulatory strategy through which continuously expressed transcription factors control acquisition of neuronal identity at different stages of development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Neurônios Serotoninérgicos/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Técnicas de Cultura de Órgãos
13.
ACS Chem Neurosci ; 6(7): 1198-205, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25642596

RESUMO

Coordinated serotonin (5-HT) synthesis and reuptake depends on coexpression of Tph2, Aadc (Ddc), and Sert (Slc6a4) in brain 5-HT neurons. However, other gene products play critical roles in brain 5-HT synthesis and transport. For example, 5-HT synthesis depends on coexpression of genes encoding the enzymatic machinery necessary for the production and regeneration of tetrahydrobiopterin (BH4). In addition, the organic cation transporter 3 (Oct3, Slc22a3) functions as a low affinity, high capacity 5-HT reuptake protein in 5-HT neurons. The regulatory strategies controlling BH4 and Oct3 gene expression in 5-HT neurons have not been investigated. Our previous studies showed that Pet-1 is a critical transcription factor in a regulatory program that controls coexpression of Tph2, Aadc, and Sert in 5-HT neurons. Here, we investigate whether a common regulatory program determines global 5-HT synthesis and reuptake through coordinate transcriptional control. We show with comparative microarray profiling of flow sorted YFP(+) Pet-1(-/-) and wild type 5-HT neurons that Pet-1 regulates BH4 pathway genes, Gch1, Gchfr, and Qdpr. Thus, Pet-1 coordinates expression of all rate-limiting enzymatic (Tph2, Gch1) and post-translational regulatory (Gchfr) steps that determine the level of mammalian brain 5-HT synthesis. Moreover, Pet-1 globally controls acquisition of 5-HT reuptake in dorsal raphe 5-HT neurons by coordinating expression of Slc6a4 and Slc22a3. In situ hybridizations revealed that virtually all 5-HT neurons in the dorsal raphe depend on Pet-1 for Slc22a3 expression; similar results were obtained for Htr1a. Therefore, few if any 5-HT neurons in the dorsal raphe are resistant to loss of Pet-1 for their full neuron-type identity.


Assuntos
Biopterinas/análogos & derivados , Núcleo Dorsal da Rafe/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Neurônios Serotoninérgicos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biopterinas/metabolismo , Proteínas de Transporte/metabolismo , GTP Cicloidrolase/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Receptor 5-HT1A de Serotonina/metabolismo , Rombencéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Triptofano Hidroxilase/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25695968

RESUMO

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Assuntos
Proliferação de Células , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Glucose/genética , Glucose/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Receptores Adrenérgicos alfa 2/genética
15.
Nat Neurosci ; 17(7): 899-907, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24929660

RESUMO

The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.


Assuntos
Mitose/fisiologia , Neurônios/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Sobrevivência Celular , Cromatina/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Humanos , Invertebrados , Doenças do Sistema Nervoso/fisiopatologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/ultraestrutura , Vertebrados/fisiologia
16.
Neuron ; 83(2): 344-360, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24952960

RESUMO

The link between dysregulated serotonergic activity and depression and anxiety disorders is well established, yet the molecular mechanisms underlying these psychopathologies are not fully understood. Here, we explore the role of microRNAs in regulating serotonergic (5HT) neuron activity. To this end, we determined the specific microRNA "fingerprint" of 5HT neurons and identified a strong microRNA-target interaction between microRNA 135 (miR135), and both serotonin transporter and serotonin receptor-1a transcripts. Intriguingly, miR135a levels were upregulated after administration of antidepressants. Genetically modified mouse models, expressing higher or lower levels of miR135, demonstrated major alterations in anxiety- and depression-like behaviors, 5HT levels, and behavioral response to antidepressant treatment. Finally, miR135a levels in blood and brain of depressed human patients were significantly lower. The current results suggest a potential role for miR135 as an endogenous antidepressant and provide a venue for potential treatment and insights into the onset, susceptibility, and heterogeneity of stress-related psychopathologies.


Assuntos
Antidepressivos/uso terapêutico , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , MicroRNAs/genética , Resiliência Psicológica , Serotonina/metabolismo , Estresse Psicológico/genética , Animais , Antidepressivos/farmacologia , Ansiedade/genética , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Depressão/genética , Depressão/metabolismo , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo
17.
PLoS One ; 9(5): e97412, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831114

RESUMO

The serotonin and circadian systems are two important interactive regulatory networks in the mammalian brain that regulate behavior and physiology in ways that are known to impact human mental health. Previous work on the interaction between these two systems suggests that serotonin modulates photic input to the central circadian clock (the suprachiasmatic nuclei; SCN) from the retina and serves as a signal for locomotor activity, novelty, and arousal to shift the SCN clock, but effects of disruption of serotonergic signaling from the raphe nuclei on circadian behavior and on SCN function are not fully characterized. In this study, we examined the effects on diurnal and circadian behavior, and on ex vivo molecular rhythms of the SCN, of genetic deficiency in Pet-1, an ETS transcription factor that is necessary to establish and maintain the serotonergic phenotype of raphe neurons. Pet-1⁻/⁻ mice exhibit loss of rhythmic behavioral coherence and an extended daily activity duration, as well as changes in the molecular rhythms expressed by the clock, such that ex vivo SCN from Pet-1⁻/⁻ mice exhibit period lengthening and sex-dependent changes in rhythmic amplitude. Together, our results indicate that Pet-1 regulation of raphe neuron serotonin phenotype contributes to the period, precision and light/dark partitioning of locomotor behavioral rhythms by the circadian clock through direct actions on the SCN clock itself, as well as through non-clock effects.


Assuntos
Comportamento Animal , Ritmo Circadiano , Atividade Motora , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição/fisiologia , Animais , Encéfalo/metabolismo , Feminino , Genótipo , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Retina/fisiologia , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
18.
Proc Natl Acad Sci U S A ; 111(17): 6479-84, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733892

RESUMO

Serotonin 2c receptors (5-HT2c-Rs) are drug targets for certain mental disorders, including schizophrenia, depression, and anxiety. 5-HT2c-Rs are expressed throughout the brain, making it difficult to link behavioral changes to circuit specific receptor expression. Various 5-HT-Rs, including 5-HT2c-Rs, are found in the dorsal raphe nucleus (DRN); however, the function of 5-HT2c-Rs and their influence on the serotonergic signals mediating mood disorders remain unclear. To investigate the role of 5-HT2c-Rs in the DRN in mice, we developed a melanopsin-based optogenetic probe for activation of Gq signals in cellular domains, where 5-HT2c-Rs are localized. Our results demonstrate that precise temporal control of Gq signals in 5-HT2c-R domains in GABAergic neurons upstream of 5-HT neurons provides negative feedback regulation of serotonergic firing to modulate anxiety-like behavior in mice.


Assuntos
Ansiedade/fisiopatologia , Retroalimentação Fisiológica , Neurônios GABAérgicos/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Inibição Neural , Receptor 5-HT2C de Serotonina/metabolismo , Serotonina/metabolismo , Potenciais de Ação/efeitos da radiação , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Cálcio/metabolismo , Regulação para Baixo/efeitos da radiação , Retroalimentação Fisiológica/efeitos da radiação , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/efeitos da radiação , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Luz , Camundongos , Inibição Neural/efeitos da radiação , Optogenética , Estrutura Terciária de Proteína , Núcleos da Rafe/metabolismo , Núcleos da Rafe/efeitos da radiação , Opsinas de Bastonetes/química , Opsinas de Bastonetes/metabolismo , Transdução de Sinais/efeitos da radiação
19.
Neuron ; 81(6): 1263-1273, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24656249

RESUMO

G protein-coupled receptors (GPCRs) coupling to Gi/o signaling pathways are involved in the control of important physiological functions, which are difficult to investigate because of the limitation of tools to control the signaling pathway with precise kinetics and specificity. We established two vertebrate cone opsins, short- and long-wavelength opsin, for long-lasting and repetitive activation of Gi/o signaling pathways in vitro and in vivo. We demonstrate for both opsins the repetitive fast, membrane-delimited, ultra light-sensitive, and wavelength-dependent activation of the Gi/o pathway in HEK cells. We also show repetitive control of Gi/o pathway activation in 5-HT1A receptor domains in the dorsal raphe nucleus (DRN) in brain slices and in vivo, which is sufficient to modulate anxiety behavior in mice. Thus, vertebrate cone opsins represent a class of tools for understanding the role of Gi/o-coupled GPCRs in health and disease.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal , Opsinas dos Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transdução de Sinais/fisiologia , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Luz , Camundongos , Neurônios/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Opsinas de Bastonetes/metabolismo
20.
Eur J Neurosci ; 38(5): 2650-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23841816

RESUMO

Increased adult neurogenesis is a major neurobiological correlate of the beneficial effects of antidepressants. Indeed, selective serotonin (5-HT) re-uptake inhibitors, which increase 5-HT transmission, enhance adult neurogenesis in the dentate gyrus (DG) of the hippocampus. However, the consequences of 5-HT depletion are still unclear as studies using neurotoxins that target serotonergic neurons reached contradictory conclusions on the role of 5-HT on DG cell proliferation. Here, we analysed two genetic models of 5-HT depletion, the Pet1(-/-) and the VMAT2(f/f) ; SERT(cre/+) mice, which have, respectively, 80 and 95% reductions in hippocampal 5-HT. In both models, we found unchanged cell proliferation of the neural precursors in the DG subgranular zone, whereas a significant increase in the survival of newborn neurons was noted 1 and 4 weeks after BrdU injections. This pro-survival trait was phenocopied pharmacologically with 5-HT synthesis inhibitor PCPA treatment in adults, indicating that this effect was not developmental. Furthermore, a 1-week administration of the 5-HT1A receptor agonist 8-OH-DPAT in Pet1(-/-) and PCPA-treated mice normalised hippocampal cell survival. Overall, our results indicate that constitutive 5-HT depletion does not alter the proliferation of neural precursors in the DG but promotes the survival of newborn cells, an effect which involves activation of postsynaptic 5-HT1A receptors. The role of 5-HT in selective neuronal elimination points to a new facet in its multiple effects in controlling neural circuit maturation.


Assuntos
Giro Denteado/metabolismo , Neurogênese , Neurônios/citologia , Serotonina/fisiologia , Animais , Sobrevivência Celular , Giro Denteado/citologia , Feminino , Fenclonina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Serotonina/metabolismo , Serotonina/genética , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Proteínas Vesiculares de Transporte de Monoamina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA