Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(19): 16793-16801, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29726251

RESUMO

Reversible covalent chemistry provides access to robust materials with the ability to be degraded and reformed upon exposure to an appropriate stimulus. Photoresponsive units are attractive for this purpose, as the spatial and temporal application of light is easily controlled. Coumarin derivatives undergo a [2 + 2] cycloaddition upon exposure to long-wave UV irradiation (365 nm), and this process can be reversed using short-wave UV light (254 nm). Therefore, polymers cross-linked by coumarin groups are excellent candidates as reversible covalent gels. In this work, copolymerization of coumarin-containing monomers with the hydrophilic comonomer N, N-dimethylacrylamide yielded water-soluble, linear polymers that could be cured with long-wave UV light into free-standing hydrogels, even in the absence of a photoinitiator. Importantly, the gels were reverted back to soluble copolymers upon short-wave UV irradiation. This process could be cycled, allowing for recycling and remolding of the hydrogel into additional shapes. Further, this hydrogel can be imprinted with patterns through a mask-based, post-gelation photoetching method. Traditional limitations of this technique, such as the requirement for uniform etching in one direction, have been overcome by combining these materials with a soft-matter additive manufacturing methodology. In a representative application of this approach, we printed solid structures in which the interior coumarin-cross-linked gel is surrounded by a nondegradable gel. Upon exposure to short-wave UV irradiation, the coumarin-cross-linked gel was reverted to soluble prepolymers that were washed away to yield hollow hydrogel objects.

2.
ACS Macro Lett ; 7(9): 1105-1110, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832198

RESUMO

Synthetic hydrogels have been widely adopted as well-defined matrices for three-dimensional (3D) cell culture, with increasing interest in systems that enable the co-culture of multiple cell types for probing both cell-matrix and cell-cell interactions in studies of tissue regeneration and disease. We hypothesized that the unique dynamic covalent chemistry of self-healing hydrogels could be harnessed for not only the encapsulation and culture of human cells but also the subsequent construction of layered hydrogels for 3D co-cultures. To test this, we formed hydrogels using boronic acid-functionalized polymers and demonstrated their self-healing in the presence of physiologically-relevant cell culture media. Two model human cell lines, MDA-MB-231 breast cancer cells and CCL151 pulmonary fibroblasts, were encapsulated within these dynamic materials, and good viability was observed over time. Finally, self-healing of cut hydrogel 'blocks' laden with these different cell types was used to create layered hydrogels for the generation of a dynamic co-culture system. This work demonstrates the utility of self-healing materials for multi-dimensional cultures and establishes approaches broadly useful for a variety of biological applications.

3.
ACS Omega ; 3(12): 17863-17870, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458380

RESUMO

Boronic acids have found widespread use in the field of biomaterials, primarily through their ability to bind with biologically relevant 1,2- and 1,3-diols, including saccharides and peptidoglycans, or with polyols to prepare hydrogels with dynamic covalent or responsive behavior. Despite a wide range of boronic acid architectures that have been previously considered, there is a need for greater understanding of the structure-reactivity relationships that govern binding affinity to diols. In this study, various boronic acids and other organoboron compounds were investigated to determine their pK a and their binding constants with the biologically relevant diols including sorbitol, fructose, and glucose. Boronic acid pK a values were determined through spectroscopic titration, whereas binding constants were determined by fluorescence spectroscopy during competitive binding studies. Key structure-reactivity relationships clearly indicated that both boronic acid structure and solution pH must be carefully considered. By considering a variety of boronic acids with systematically varied electronics and sterics, these results provide guidance during selection of organoboron compounds in sensing, delivery, and materials chemistry.

4.
ACS Macro Lett ; 4(2): 220-224, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35596411

RESUMO

This report describes the synthesis and characterization of boronate ester-cross-linked hydrogels capable of self-healing behavior at neutral and acidic pH. This atypically wide pH range over which healing behavior is observed was achieved through the use of an intramolecular coordinating boronic acid monomer, 2-acrylamidophenylboronic acid (2APBA), where the internal coordination helped to stabilize cross-links formed at acidic and neutral pH. Two different hydrogels were formed from a 2APBA copolymer cross-linked with either poly(vinyl alcohol) or a catechol-functionalized copolymer. The self-healing ability of these hydrogels was characterized through physical testing and rheological studies. Furthermore, the catechol cross-linked hydrogel was shown to be oxygen sensitive, demonstrating reduced self-healing and stress relaxation after partial oxidation. The synthesis of these hydrogels demonstrates a new strategy to produce boronic acid materials capable of self-healing at physiological pH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA