Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Health Perspect ; 132(9): 97005, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39240788

RESUMO

BACKGROUND: Environmental contaminants (ECs) are increasingly recognized as crucial drivers of dyslipidemia and cardiovascular disease (CVD), but the comprehensive impact spectrum and interlinking mechanisms remain uncertain. OBJECTIVES: We aimed to systematically evaluate the association between exposure to 80 ECs across seven divergent categories and markers of dyslipidemia and investigate their underpinning biomolecular mechanisms via an unbiased integrative approach of internal chemical exposome and multi-omics. METHODS: A longitudinal study involving 76 healthy older adults was conducted in Jinan, China, and participants were followed five times from 10 September 2018 to 19 January 2019 in 1-month intervals. A broad spectrum of seven chemical categories covering the prototypes and metabolites of 102 ECs in serum or urine as well as six serum dyslipidemia markers [total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein (Apo)A1, ApoB, and ApoE4] were measured. Multi-omics, including the blood transcriptome, serum/urine metabolome, and serum lipidome, were profiled concurrently. Exposome-wide association study and the deletion/substitution/addition algorithms were applied to explore the associations between 80 EC exposures detection frequency >50% and dyslipidemia markers. Weighted quantile sum regression was used to assess the mixture effects and relative contributions. Multi-omics profiling, causal inference model, and pathway analysis were conducted to interpret the mediating biomolecules and underlying mechanisms. Examination of cytokines and electrocardiograms was further conducted to validate the observed associations and biomolecular pathways. RESULTS: Eight main ECs [1-naphthalene, 1-pyrene, 2-fluorene, dibutyl phosphate, tri-phenyl phosphate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, chromium, and vanadium] were significantly associated with most dyslipidemia markers. Multi-omics indicated that the associations were mediated by endogenous biomolecules and pathways, primarily pertinent to CVD, inflammation, and metabolism. Clinical measures of cytokines and electrocardiograms further cross-validated the association of these exogenous ECs with systemic inflammation and cardiac function, demonstrating their potential mechanisms in driving dyslipidemia pathogenesis. DISCUSSION: It is imperative to prioritize mitigating exposure to these ECs in the primary prevention and control of the dyslipidemia epidemic. https://doi.org/10.1289/EHP13864.


Assuntos
Dislipidemias , Exposição Ambiental , Poluentes Ambientais , Expossoma , Humanos , Dislipidemias/induzido quimicamente , Dislipidemias/epidemiologia , China , Masculino , Feminino , Poluentes Ambientais/sangue , Idoso , Exposição Ambiental/estatística & dados numéricos , Estudos Longitudinais , Pessoa de Meia-Idade , Biomarcadores/sangue , População do Leste Asiático
2.
J Hazard Mater ; 478: 135442, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39128150

RESUMO

The brominated azo dye (BAD) Disperse Blue (DB79) is a widespread environmental pollutant. The long-term toxicological effects of DB79 and the mechanisms thereof must be understood to allow assessment of the risks of DB79 pollution. A dual-omics approach employing in silico analysis, bioinformatics, and in vitro bioassays was used to investigate the transgenerational (F0-F2) toxicity of DB79 in zebrafish at environmentally relevant concentrations and identify molecular initiating events and key events associated with DB79-induced fertility disorders. Exposure to 500 µg/L DB79 decreased fecundity in the F0 and F1 generations by > 30 % and increased the condition factor of the F1 generation 1.24-fold. PPARα/RXR and PXR ligand binding activation were found to be critical molecular initiating events associated with the decrease in fecundity. Several key events (changes in fatty acid oxidation and uptake, lipoprotein metabolism, and xenobiotic metabolism and transport) involved in lipid dysregulation and xenobiotic disposition were found to be induced by DB79 through bioinformatic annotation using dual-omics data. The biomolecular underpinnings of decreased transgenerational fertility in zebrafish attributable to BAD exposure were elucidated and novel biomolecular targets in the adverse outcome pathway framework were identified. These results will inform future studies and facilitate the development of mitigation strategies.


Assuntos
Fertilidade , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fertilidade/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Compostos Azo/toxicidade , Feminino , Masculino , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo
3.
Environ Health Perspect ; 132(7): 77005, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028628

RESUMO

BACKGROUND: Evidence suggested that abiotic airborne exposures may be associated with changes in body composition. However, more evidence is needed to identify key pollutants linked to adverse health effects and their underlying biomolecular mechanisms, particularly in sensitive older adults. OBJECTIVES: Our research aimed to systematically assess the relationship between abiotic airborne exposures and changes in body composition among healthy older adults, as well as the potential mediating mechanisms through the serum lipidome. METHODS: From September 2018 to January 2019, we conducted a monthly survey among 76 healthy adults (60-69 years old) in the China Biomarkers of Air Pollutant Exposure (BAPE) study, measuring their personal exposures to 632 abiotic airborne pollutions using MicroPEM and the Fresh Air wristband, 18 body composition indicators from the InBody 770 device, and lipidomics from venous blood samples. We used an exposome-wide association study (ExWAS) and deletion/substitution/addition (DSA) model to unravel complex associations between exposure to contaminant mixtures and body composition, a Bayesian kernel machine regression (BKMR) model to assess the overall effect of key exposures on body composition, and mediation analysis to identify lipid intermediators. RESULTS: The ExWAS and DSA model identified that 2,4,5-T methyl ester (2,4,5-TME), 9,10-Anthracenedione (ATQ), 4b,8-dimethyl-2-isopropylphenanthrene, and 4b,5,6,7,8,8a,9,10-octahydro-(DMIP) were associated with increased body fat mass (BFM), fat mass indicators (FMI), percent body fat (PBF), and visceral fat area (VFA) in healthy older adults [Bonferroni-Hochberg false discovery rate (FDRBH)<0.05]. The BKMR model demonstrated a positive correlation between contaminants (anthracene, ATQ, copaene, di-epi-α-cedrene, and DMIP) with VFA. Mediation analysis revealed that phosphatidylcholine [PC, PC(16:1e/18:1), PC(16:2e/18:0)] and sphingolipid [SM, SM(d18:2/24:1)] mediated a significant portion, ranging from 12.27% to 26.03% (p-value <0.05), of the observed increase in VFA. DISCUSSION: Based on the evidence from multiple model results, ATQ and DMIP were statistically significantly associated with the increased VFA levels of healthy older adults, potentially regulated through lipid intermediators. These findings may have important implications for identifying potentially harmful environmental chemicals and developing targeted strategies for the control and prevention of chronic diseases in the future, particularly as the global population is rapidly aging. https://doi.org/10.1289/EHP13865.


Assuntos
Poluentes Atmosféricos , Composição Corporal , Exposição Ambiental , Expossoma , Lipidômica , Humanos , Idoso , Pessoa de Meia-Idade , China , Feminino , Poluentes Atmosféricos/análise , Masculino , Exposição Ambiental/estatística & dados numéricos , Biomarcadores/sangue , Poluição do Ar/estatística & dados numéricos
4.
Toxicol Sci ; 200(2): 287-298, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38730545

RESUMO

Male fertility depends on normal pubertal development. Di-(2-ethylhexyl) phthalate (DEHP) is a potent antiandrogen chemical, and exposure to DEHP during peripuberty can damage the developing male reproductive system, especially the testis. However, the specific cellular targets and differentiation processes affected by DEHP, which lead to testicular toxicity, remain poorly defined. Herein, we presented the first single-cell transcriptomic profile of the pubertal mouse testis following DEHP exposure. To carry out the experiment, 2 groups (n = 8 each) of 3-week-old male mice were orally administered 0.5% carboxymethylcellulose sodium salt or 100 mg/kg body weight DEHP daily from postnatal day 21-48, respectively. Using single-cell RNA sequencing, a total of 31 distinct cell populations were identified, notably, Sertoli and Leydig cells emerged as important targets of DEHP. DEHP exposure significantly decreased the proportions of Sertoli cell clusters expressing mature Sertoli markers (Sox9 and Ar), and selectively reduced the expression of testosterone synthesis genes in fetal Leydig cells. Through cell-cell interaction analyses, we observed changed numbers of interactions in Sertoli cells 1 (SCs1), Leydig cells 1 (LCs1), and interstitial macrophages, and we also identified cell-specific ligand gene expressions in these clusters, such as Inha, Fyn, Vcam1, and Apoe. Complementary in vitro assays confirmed that DEHP directly reduced the expression of genes related to Sertoli cell adhesion and intercellular communication. In conclusion, peripubertal DEHP exposure reduced the number of mature Sertoli cells and may disrupt testicular steroidogenesis by affecting the testosterone synthesis genes in fetal Leydig cells rather than adult Leydig cells.


Assuntos
Dietilexilftalato , Células Intersticiais do Testículo , Células de Sertoli , Testículo , Animais , Masculino , Dietilexilftalato/toxicidade , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células de Sertoli/patologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Camundongos , Análise de Célula Única , Maturidade Sexual/efeitos dos fármacos , Testosterona/sangue , Transcriptoma/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL
5.
J Hazard Mater ; 469: 134009, 2024 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492399

RESUMO

Evidence on the effects of internal chemical mixture exposures on biological age is limited. It also remains unclear whether hormone homeostasis and lifestyle factors can modify such a relationship. Based on the Biomarkers for Air Pollutants Exposure (BAPE) study, which involved healthy older adults aged 60-69 years in China, we found that chemical mixture exposures, including metals, polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFASs), phthalates (PAEs), and organophosphate esters (OPEs), were significantly associated with shortened DNAmTL and accelerated SkinBloodClock, in which PFASs and OPEs in blood were the primary contributors to DNAmTL, while metals and PAEs had relatively higher contributions in urine. Furthermore, lower levels of thyroxin appeared to exacerbate the adverse effects of environmental chemicals on epigenetic ageing but relatively higher levels of physical activity had the beneficial impact. These findings may have important implications for the development of healthy ageing strategy and aged care policy, particularly in light of the global acceleration of population ageing.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hormônios Tireóideos , Biomarcadores , Organofosfatos/toxicidade , Exercício Físico , Epigênese Genética
6.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4189-4203, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877399

RESUMO

Silver nanoparticles (AgNPs) is known as one of the most valuable metal nanoparticles in antibacterial and anticancer application. AgNPs-resistant bacteria has been documented, but it is unclear whether cancer cells can also escape the anti-cancer effect of AgNPs. In this study, we aimed to investigate this phenomenon and its underlying mechanism. The antibacterial activity and cytotoxicity of AgNPs were measured in the presence of HeLa cell metabolites. The status of AgNPs in the system associated with metabolites were characterized by UV-Vis, Zetasizer Nano ZS, and transmission electron microscopy. Non-targeted metabolomics was used to reveal the metabolites components that bind with AgNPs. HeLa cells were injected intraperitoneally to establish the tumor-bearing mice model, and the stability of AgNPs in mice serum was analyzed. The results manifested that HeLa cell metabolites inhibited the anticancer and antibacterial effects of AgNPs in a dose-dependent manner by causing AgNPs aggregation. Effective metabolites that inhibited the biological activity of AgNPs were stable in 100 ℃, insoluble in chloroform, containing sulfur elements, and had a molecular weight less than 1 kDa in molecular weight. There were 115 compounds bound with AgNPs. In vitro experiments showed that AgNPs aggregation occurred only when the concentration of α-ketoglutarate (AKG) and glutathione (GSH) together reached a certain threshold. Interestingly, the concentration of AKG and GSH in HeLa cellular metabolites was 10 and 6 times higher than that in normal cervical epithelial cells, respectively, which explained why the threshold was reached. Furthermore, the stability of AgNPs in the serum of tumor-bearing mice decreased by 20% (P < 0.05) compared with the healthy mice. In conclusion, our study demonstrates that HeLa cells escaped the anti-cancer effect of AgNPs through the synergistic effect of AKG and GSH, suggesting the need to develop strategies to overcome this limitation.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Animais , Camundongos , Células HeLa , Prata/farmacologia , Ácidos Cetoglutáricos/farmacologia , Antibacterianos/farmacologia , Glutationa , Testes de Sensibilidade Microbiana
7.
J Hazard Mater ; 457: 131760, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37285786

RESUMO

2-Bromo-4, 6-dinitroaniline (BDNA) is a widespread azo-dye-related hazardous pollutant. However, its reported adverse effects are limited to mutagenicity, genotoxicity, endocrine disruption, and reproductive toxicity. We systematically assessed the hepatotoxicity of BDNA exposure via pathological and biochemical examinations and explored the underlying mechanisms via integrative multi-omics analyses of the transcriptome, metabolome, and microbiome in rats. After 28 days of oral administration, compared with the control group, 100 mg/kg BDNA significantly triggered hepatotoxicity, upregulated toxicity indicators (e.g., HSI, ALT, and ARG1), and induced systemic inflammation (e.g., G-CSF, MIP-2, RANTES, and VEGF), dyslipidemia (e.g., TC and TG), and bile acid (BA) synthesis (e.g., CA, GCA, and GDCA). Transcriptomic and metabolomic analyses revealed broad perturbations in gene transcripts and metabolites involved in the representative pathways of liver inflammation (e.g., Hmox1, Spi1, L-methionine, valproic acid, and choline), steatosis (e.g., Nr0b2, Cyp1a1, Cyp1a2, Dusp1, Plin3, arachidonic acid, linoleic acid, and palmitic acid), and cholestasis (e.g., FXR/Nr1h4, Cdkn1a, Cyp7a1, and bilirubin). Microbiome analysis revealed reduced relative abundances of beneficial gut microbial taxa (e.g., Ruminococcaceae and Akkermansia muciniphila), which further contributed to the inflammatory response, lipid accumulation, and BA synthesis in the enterohepatic circulation. The observed effect concentrations here were comparable to the highly contaminated wastewaters, showcasing BDNA's hepatotoxic effects at environmentally relevant concentrations. These results shed light on the biomolecular mechanism and important role of the gut-liver axis underpinning BDNA-induced cholestatic liver disorders in vivo.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Colestase , Ratos , Animais , Multiômica , Fígado/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamação/metabolismo , Ácidos e Sais Biliares/efeitos adversos , Ácidos e Sais Biliares/metabolismo
8.
Front Microbiol ; 14: 1153147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293234

RESUMO

Antimicrobial resistance poses a significant threat to public health and social development worldwide. This study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) in treating multidrug-resistant bacterial infections. Eco-friendly spherical AgNPs were synthesized using rutin at room temperature. The biocompatibility of both polyvinyl pyrrolidone (PVP) and mouse serum (MS)-stabilized AgNPs was evaluated at 20 µg/mL and showed a similar distribution in mice. However, only MS-AgNPs significantly protected mice from sepsis caused by the multidrug-resistant Escherichia coli (E. coli) CQ10 strain (p = 0.039). The data revealed that MS-AgNPs facilitated the elimination of Escherichia coli (E. coli) in the blood and the spleen, and the mice experienced only a mild inflammatory response, as interleukin-6, tumor necrosis factor-α, chemokine KC, and C-reactive protein levels were significantly lower than those in the control group. The results suggest that the plasma protein corona strengthens the antibacterial effect of AgNPs in vivo and may be a potential strategy for combating antimicrobial resistance.

9.
Environ Sci Technol ; 57(20): 7684-7697, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167023

RESUMO

Mounting evidence has shown that ambient PM2.5 exposure is closely associated with the development of obesity, and adipose tissue represents an important endocrine target for PM2.5. In this study, the 3T3-L1 preadipocyte differentiation model was employed to comprehensively explore the adipogenic potential of PM2.5. After 8 days of PM2.5 exposure, adipocyte fatty acid uptake and lipid accumulation were significantly increased, and adipogenic differentiation of 3T3-L1 cells was promoted in a concentration-dependent manner. Transcriptome and lipidome analyses revealed the systematic disruption of transcriptional and lipid profiling at 10 µg/mL PM2.5. Functional enrichment and visualized network analyses showed that the peroxisome proliferator-activated receptor (PPAR) pathway and the metabolism of glycerophospholipids, glycerolipids, and sphingolipids were most significantly affected during adipocyte differentiation. Reporter gene assays indicated that PPARγ was activated by PM2.5, demonstrating that PM2.5 promoted adipogenesis by activating PPARγ. The increased transcriptional and protein expressions of PPARγ and downstream adipogenesis-associated markers (e.g., Fabp4 and CD36) were further cross-validated using qRT-PCR and western blot. PM2.5-induced adipogenesis, PPARγ pathway activation, and lipid remodeling were significantly attenuated by the supplementation of a PPARγ antagonist (T0070907). Overall, this study yielded mechanistic insights into PM2.5-induced adipogenesis in vitro by identifying the potential biomolecular targets for the prevention of PM2.5-induced obesity and related metabolic diseases.


Assuntos
Adipogenia , PPAR gama , Animais , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Células 3T3-L1 , Lipídeos , Obesidade , Diferenciação Celular
10.
Front Nutr ; 10: 1145841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063323

RESUMO

Jasmine flower residue (JFR) is a by-product retained in the production process of jasmine tea and can be used as an unconventional feed due to its rich nutrient value. This study aimed to evaluate the effects of the addition of JFR to the diet of goats on their meat quality and flavor. Twenty-four castrated Nubian male goats were randomly divided into two groups and fed a mixed diet containing 10% JFR (JFR, n = 12) or a conventional diet (CON, n = 12) for 45 days. Meat quality and flavor were measured at the end of the treatment. The addition of JFR to the diet could reduce the shear force of the longissimus dorsi muscle, as well as, the cross-sectional area and diameter of muscle fibers, indicating that the addition of JFR improved meat quality. JFR also increased the content of glutamic acid and ω-3 polyunsaturated fatty acid (C18:3n3 and C20:5N3) and reduced the content of C24:1 and saturated fatty acid (C20:0 and C22:0). In addition, the use of JFR increased the content of acetaldehyde and hexanal in the meat. Furthermore, JFR introduced new volatile components in the meat. The umami, saltiness, and richness of the meat also improved. In conclusion, the addition of jasmine flower residue to the diet can improve the meat quality and flavor of goat.

11.
Ecotoxicol Environ Saf ; 256: 114852, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023648

RESUMO

Antimony (Sb) poses a significant threat to human health due to sharp increases in its exploitation and application globally, but few studies have explored the pathophysiological mechanisms of acute hepatotoxicity induced by Sb exposure. We established an in vivo model to comprehensively explore the endogenous mechanisms underlying liver injury induced by short-term Sb exposure. Adult female and male Sprague-Dawley rats were orally administrated various concentrations of potassium antimony tartrate for 28 days. After exposure, the serum Sb concentration, liver-to-body weight ratio, and serum glucose levels significantly increased in a dose-dependent manner. Body weight gain and serum concentrations of biomarkers of hepatic injury (e.g., total cholesterol, total protein, alkaline phosphatase, and the aspartate aminotransferase/alanine aminotransferase ratio) decreased with increasing Sb exposure. Through integrative non-targeted metabolome and lipidome analyses, alanine, aspartate, and glutamate metabolism; phosphatidylcholines; sphingomyelins; and phosphatidylinositols were the most significantly affected pathways in female and male rats exposed to Sb. Additionally, correlation analysis showed that the concentrations of certain metabolites and lipids (e.g., deoxycholic acid, N-methylproline, palmitoylcarnitine, glycerophospholipids, sphingomyelins, and glycerol) were significantly associated with hepatic injury biomarkers, indicating that metabolic remodeling may be involved in apical hepatotoxicity. Our study demonstrated that short-term exposure to Sb induces hepatotoxicity, possibly through a glycolipid metabolism disorder, providing an important reference for the health risks of Sb pollution.


Assuntos
Antimônio , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Antimônio/toxicidade , Esfingomielinas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Biomarcadores/metabolismo , Peso Corporal , Fígado/metabolismo
12.
Environ Health Perspect ; 131(4): 47009, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37042841

RESUMO

BACKGROUND: Organophosphate esters (OPEs) are common endocrine-disrupting chemicals, and OPE exposure may be associated with type 2 diabetes (T2D). However, greater knowledge regarding the biomolecular intermediators underlying the impact of OPEs on T2D in humans are needed to understand biological etiology. OBJECTIVES: We explored the associations between OPE exposure and glycometabolic markers among older Chinese adults 60-69 years of age to elucidate the underlying mechanisms using a multi-omics approach. METHODS: This was a longitudinal panel study comprising 76 healthy participants 60-69 years of age who lived in Jinan city of northern China. The study was conducted once every month for 5 months, from September 2018 to January 2019. We measured a total of 17 OPEs in the blood, 11 OPE metabolites in urine, and 4 glycometabolic markers (fasting plasma glucose, glycated serum protein, fasting insulin, and homeostatic model assessment for insulin resistance). The blood transcriptome and serum/urine metabolome were also evaluated. The associations between individual OPEs and glycometabolic markers were explored. An adverse outcome pathway (AOP) was established to determine the biomolecules mediating the associations. RESULTS: Exposure to five OPEs and OPE metabolites (trimethylolpropane phosphate, triphenyl phosphate, tri-iso-butyl phosphate, dibutyl phosphate, and diphenyl phosphate) was associated with increased levels of glycometabolic markers. The mixture effect analysis further indicated the adverse effect of OPE mixtures. Multi-omics analyses revealed that the endogenous changes in the transcriptional and metabolic levels were associated with OPE exposure. The putative AOPs model suggested that triggers of molecular initiation events (e.g., insulin receptor and glucose transporter type 4) with subsequent key events, including disruptions in signal transduction pathways (e.g., phosphatidylinositol 3-kinase/protein kinase B and insulin secretion signaling) and biological functions (glucose uptake and insulin secretion), may constitute the diabetogenic effects of OPEs. DISCUSSION: OPEs are associated with the elevated risk of T2D among older Chinese adults 60-69 years of age. Implementing OPE exposure reduction strategies may help reduce the T2D burden among these individuals, if the relationship is causal. https://doi.org/10.1289/EHP11896.


Assuntos
Diabetes Mellitus Tipo 2 , Retardadores de Chama , Resistência à Insulina , Idoso , Humanos , Pessoa de Meia-Idade , China/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , População do Leste Asiático , Ésteres , Retardadores de Chama/análise , Organofosfatos/urina , Fosfatos
13.
China CDC Wkly ; 5(1): 1-4, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36777470

RESUMO

What is already known about this topic?: There is a toilet flush-soil stack-floor drain pathway of aerosol transmission in multistory and high-rise buildings, but the influencing factors are not completely clear. What is added by this report?: The poor airtightness of the connecting parts of the floor drain, as well as pressure fluctuations in the sewage pipe during toilet flushing caused by blockage of the soil stack vent, may lead to the cross-floor transmission of viral aerosols through the soil stack and floor drains. What are the implications for public health practice?: In multistory and high-rise buildings, the bathroom floor drains should be kept sealed, and floor drain connecting parts should be airtight. Furthermore, the soil stack vent should not be blocked. In this way, the cross-floor transmission of viral aerosols can be effectively reduced.

14.
Environ Int ; 170: 107614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375280

RESUMO

BACKGROUND: Air pollution is associated with accelerated biological ages determined by DNA methylation (DNAm) patterns, imposing further risks of age-related adverse effects. However, little is known about the independent and joint effects of exposure to gaseous organic chemicals that may share a common source. METHODS: We conducted a panel study with the 3-day exposure assessment monthly among 73 Chinese healthy elderly people aged 60 to 69 years in Jinan, Shandong province during September 2018 to January 2019.Exposure to 26 ambient organic chemical contaminants were measured by wearable passive samplers, including volatile organic compounds, polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), nitroaromatics (NIs), polybrominated diphenyl ethers, chlorinated hydrocarbons, and organophosphate esters. The Illumina MethylationEPIC BeadChip was used to measure DNA methylation levels in blood samples, and based on which, epigenetic ageing biomarkers, including Hannum clock, Horvath clock, DNAm PhenoAge, DNAm GrimAge, and DNAm estimator of telomere length (DNAmTL) were calculated. Linear mixed effect models were used to estimate the linear associations between 3-day personal chemical exposure and the epigenetic biomarkers, Weighted quantile sum (WQS) regression and the Bayesian kernel machine regression (BKMR) model were further used to evaluate the effect of chemical mixtures. RESULTS: Multiple linear mixed effects regression models showed that DNAmPhenoAge acceleration was significantly and positively associated with exposure to PAEs, NIs, and PAHs in healthy elderly individuals. Both WQS regression and BKMR models showed a significant positive association with DNAmPhenoAge acceleration with chemical exposures, in which the effect of di-n-butyl phthalate exposure showed the greatest importance. CONCLUSION: These findings suggest that exposure to a mixture of airborne chemicals significantly increase the acceleration of the epigenetic biomarker of phenotypic age. These findings serve to identify toxic chemicals in the air and facilitate the evaluation of their potentially severe health effects.


Assuntos
Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Idoso , Humanos , Teorema de Bayes , População do Leste Asiático , Poluição do Ar/efeitos adversos , Envelhecimento , Epigenômica , Biomarcadores , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
15.
Environ Sci Technol ; 56(18): 13160-13168, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36043295

RESUMO

Dyslipidemia may be a potential mechanism linking fine particulate matter (PM2.5) to adverse cardiovascular outcomes. However, inconsistent associations between PM2.5 and blood lipids have resulted from the existing research, and the joint effect of PM2.5 elemental constituents on blood lipid profiles remains unclear. We aimed to explore the overall associations between PM2.5 elemental constituents and blood lipid profiles and to identify the significant PM2.5 elemental constituents in this association. Sixty-nine elderly people were recruited between September 2018 and January 2019. Each participant completed a survey questionnaire, 3 days of individual exposure monitoring, health examination, and biological sample collection at each follow-up visit. Bayesian kernel machine regression (BKMR) models were used to identify the joint effects of the 17 elemental constituents on blood lipid profiles. Total cholesterol, low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels were significantly increased in older adults when exposed to the mixture of PM2.5 elemental constituents. Copper and titanium had higher posterior inclusion probabilities than other constituents, ranging from 0.76 to 0.90 (Cu) and 0.74 to 0.94 (Ti). Copper and titanium in the PM2.5 elemental constituent mixture played an essential role in changes to blood lipid levels. This study highlights the importance of identifying critical hazardous PM2.5 constituents that may cause adverse cardiovascular outcomes in the future.


Assuntos
Poluentes Atmosféricos , Exposição Ambiental , Lipídeos , Idoso , Poluentes Atmosféricos/análise , Teorema de Bayes , China , LDL-Colesterol , Cobre , Exposição Ambiental/análise , Humanos , Lipídeos/sangue , Pessoa de Meia-Idade , Material Particulado/análise , Titânio
16.
China CDC Wkly ; 4(26): 565-569, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35919454

RESUMO

What is already known about this topic?: Environmental factors such as temperature and humidity play important roles in the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via droplets/aerosols. What is added by this report?: Higher relative humidity (61%-80%), longer spreading time (120 min), and greater dispersal distance (1 m) significantly reduced SARS-CoV-2 pseudovirus loads. There was an interaction effect between relative humidity and spreading time. What are the implications for public health practice?: The findings contribute to our understanding of the impact of environmental factors on the transmission of SARS-CoV-2 via airborne droplets/aerosols.

17.
Sci Total Environ ; 838(Pt 4): 156472, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660605

RESUMO

Fine particulate matter (PM2.5) exposure and sleep disturbance have been significantly associated with adverse cardiovascular outcomes, however, the combined effects of these two factors are still unclear. We conducted a multi-center cross-sectional study from November 2018 to May 2019 in the Beijing-Tianjin-Hebei region in China to investigate the potential modifying effects of sleep disturbance on associations between cardiac conduction abnormalities and PM2.5 exposure, as well as the combined effects of sleep disturbance and heavy pollution episodes, which were defined based on the PM2.5 mass concentration (≥75 µg/m3, falling in the 75th/90th percentile) and duration (1 day and ≥2 days). The sleep quality and sleep duration of all participants were evaluated using the Pittsburgh Sleep Quality Index. Standard 12-lead electrocardiogram (ECG) test was performed to measure the heart rate (HR), QRS duration (time taken for ventricular depolarization), HR corrected QT interval (time for ventricular depolarization and repolarization) and PR interval (time for atrioventricular conduction). Multivariable linear regression models were performed to evaluate the associations of PM2.5 and heavy pollution events on ECG parameters and the joint effects with sleep disturbance. We found PM2.5 exposure was independently associated with prolonged QRS and QTc intervals. Association between PM2.5 and the QTc interval was significantly stronger in participants with poor sleep quality. For each 10-µg/m3 increase in PM2.5 concentration, the QTc interval in the participants with poor sleep quality increased by 0.41 % (95 % confidence interval: 0.19, 0.64). In addition, heavy PM2.5 pollution episodes, especially extremely heavy pollution of long duration, were found to have synergistic effects with sleep disturbance on ECG parameters. Our findings provide evidence that PM2.5 exposure, especially heavy pollution episodes, may increase abnormal cardiac conduction and have a synergistic effect with sleep disturbance. Improving sleep hygiene is crucial to protect the heart health of the general population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtornos do Sono-Vigília , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , China/epidemiologia , Estudos Transversais , Exposição Ambiental/efeitos adversos , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Sono , Transtornos do Sono-Vigília/induzido quimicamente
18.
Environ Sci Technol ; 56(12): 7905-7916, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35584234

RESUMO

Human exposure to per- and polyfluoroalkyl substances (PFASs) has gained worldwide attention due to their widespread presence in the environment and adverse health effects, but the exposure assessment in the elderly is still lacking. This study aimed to assess exposures to 3 emerging PFASs (chlorinated polyfluoroalkyl ether sulfonic acids, Cl-PFESAs) and 15 legacy PFASs. The temporal variability of internal exposures and intake amounts of these PFASs were evaluated among a population of 76 healthy elderly adults (age: 60-69) in Jinan, China over 5 consecutive months. Fifteen PFASs were detected in whole blood with the mean total concentration (ΣPFAS) at 20.1 ng/mL (range: 5.0-135.9 ng/mL) dominated by perfluorooctanoic acid (PFOA) (9.0 ng/mL), perfluorooctanesulfonic acid (PFOS) (5.3 ng/mL), and 6:2 Cl-PFESA (1.6 ng/mL). Across the 5 month assessment period, significant variation was only observed for short-chain (C4-C7) perfluoroalkyl carboxylic acids, and their variations ranged from 53 to 334%. The median intake of PFOA and PFOS was estimated to be 1.46 and 0.92 ng/kg bw/day, respectively. Regression analysis showed that dietary ingestion, especially fish, was likely an important exposure pathway for PFASs among the elderly adults. Various pathways (e.g., dietary, water, air, and dust) should thus be considered to fully understand human exposure to PFASs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Adulto , Idoso , Ácidos Alcanossulfônicos/análise , Animais , China , Poeira/análise , Éteres/análise , Fluorocarbonos/análise , Humanos , Pessoa de Meia-Idade , Ácidos Sulfônicos/análise
20.
Innovation (Camb) ; 3(2): 100213, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35243467

RESUMO

Recent studies have shown that PM2.5 may activate the hypothalamus-pituitary-adrenal (HPA) axis by inducing hormonal changes, potentially explaining the increase in neurological and cardiovascular risks. In addition, an association between PM2.5 and gut microbiota and metabolites was established. The above evidence represents crucial parts of the gut-brain axis (GBA). In view of this evidence, we proposed a hypothesis that PM2.5 exposure may affect the HPA axis through the gastrointestinal tract microbiota pathway (GBA mechanism), leading to an increased risk of neurological and cardiovascular diseases. We conducted a real-world prospective repeated panel study in Jinan, China. At each visit, we measured real-time personal PM2.5 and collected fecal and blood samples. A linear mixed-effects model was used to analyze the association between PM2.5 and serum biomarkers, gut microbiota, and metabolites. We found that PM2.5 was associated with increased serum levels of hormones, especially the adrenocorticotropic hormone (ACTH) and cortisol, which are reliable hormones of the HPA axis. Gut microbiota and tryptophan metabolites and inflammation, which are important components of the GBA, were significantly associated with PM2.5. We also found links between PM2.5 and changes in the nervous and cardiovascular outcomes, e.g., increases of 19.77% (95% CI: -36.44, 125.69) in anxiety, 1.19% (95% CI: 0.65, 1.74) in fasting blood glucose (FBG), 2.09% (95% CI: 1.48, 2.70) in total cholesterol (TCHOL), and 0.93% (95% CI: 0.14, 1.72) in triglycerides (TG), were associated with 10 µg/m3 increase in PM2.5 at the lag 0-72 h, which represent the main effects of GBA. This study indicated the link between PM2.5 and the microbiota GBA for the first time, providing evidence of the potential mechanism for PM2.5 with neurological and cardiovascular system dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA