Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669665

RESUMO

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Animais , Humanos , Camundongos , Galinhas , Furões , Vírus da Influenza A Subtipo H3N2 , Aerossóis e Gotículas Respiratórios
2.
PNAS Nexus ; 1(3): pgac085, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741455

RESUMO

Clade 2.3.4.4 avian H5Ny viruses, namely H5N2, H5N6, and H5N8, have exhibited unprecedented intercontinental spread in poultry. Among them, only H5N6 viruses are frequently reported to infect mammals and cause serious human infections. In this study, the genetic and biological characteristics of surface hemagglutinin (HA) from clade 2.3.4.4 H5Ny avian influenza viruses (AIVs) were examined for adaptation in mammalian infection. Phylogenetic analysis identified an amino acid (AA) deletion at position 131 of HA as a distinctive feature of H5N6 virus isolated from human patients. This single AA deletion was found to enhance H5N6 virus replication and pathogenicity in vitro and in mammalian hosts (mice and ferrets) through HA protein acid and thermal stabilization that resulted in reduced pH threshold from pH 5.7 to 5.5 for viral-endosomal membrane fusion. Mass spectrometry and crystal structure revealed that the AA deletion in HA at position 131 introduced an N-linked glycosylation site at 129, which increases compactness between HA monomers, thus stabilizes the trimeric structure. Our findings provide a molecular understanding of how HA protein stabilization promotes cross-species avian H5N6 virus infection to mammalian hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA