Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(24): 4827, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38836328

RESUMO

Correction for 'Surface mobility gradient and emergent facilitation in glassy films' by Qiang Zhai et al., Soft Matter, 2024, https://doi.org/10.1039/D4SM00221K.

2.
Phys Rev E ; 109(5-1): 054124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907442

RESUMO

Glass formers are, in general, classified as strong or fragile depending on whether their relaxation rates follow Arrhenius or super-Arrhenius temperature dependence. There are, however, notable exceptions, such as water, which exhibit a fragile-to-strong (FTS) transition and behave as fragile and strong, respectively, at high and low temperatures. In this work, the FTS transition is studied using a distinguishable-particle lattice model previously demonstrated to be capable of simulating both strong and fragile glasses [C.-S. Lee, M. Lulli, L.-H. Zhang, H.-Y. Deng, and C.-H. Lam, Phys. Rev. Lett. 125, 265703 (2020)0031-900710.1103/PhysRevLett.125.265703]. Starting with a bimodal pair-interaction distribution appropriate for fragile glasses, we show that by narrowing down the energy dispersion in the low-energy component of the distribution, a FTS transition is observed. The transition occurs at a temperature at which the stretching exponent of the relaxation is minimized, in agreement with previous molecular dynamics simulations.

3.
Soft Matter ; 20(22): 4389-4394, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757511

RESUMO

Confining glassy polymers into films can substantially modify their local and film-averaged properties. We present a lattice model of film geometry with void-mediated facilitation behaviors but free from any elasticity effect. We analyze the spatially varying viscosity to delineate the transport properties of glassy films. The film mobility measurements reported by Yang et al., Science, 2010, 328, 1676 are successfully reproduced. The flow exhibits a crossover from a simple viscous flow to a surface-dominated regime as the temperature decreases. The propagation of a highly mobile front induced by the free surface is visualized in real space. Our approach provides a microscopic treatment of the observed glassy phenomena.

4.
Soft Matter ; 20(5): 1009-1017, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197256

RESUMO

The nature of glassy states in realistic finite dimensions is still under fierce debate. Lattice models can offer valuable insights and facilitate deeper theoretical understanding. Recently, a disordered-interacting lattice model with distinguishable particles in two dimensions (2D) has been shown to produce a wide range of dynamical properties of structural glasses, including the slow and heterogeneous characteristics of the glassy dynamics, various fragility behaviors of glasses, and so on. These findings support the usefulness of this model for modeling structural glasses. An important question is whether such properties still hold in the more realistic three dimensions. In this study, we aim to extend the distinguishable-particle lattice model (DPLM) to three dimensions (3D) and explore the corresponding glassy dynamics. Through extensive kinetic Monte Carlo simulations, we found that the 3D DPLM exhibits many typical glassy behaviors, such as plateaus in the mean square displacement of particles and the self-intermediate scattering function, dynamic heterogeneity, variability of glass fragilities, and so on, validating the effectiveness of the DPLM in a broader realistic setting. The observed glassy behaviors of the 3D DPLM appear similar to those of its 2D counterpart, in accordance with recent findings in molecular models of glasses. We further investigate the role of void-induced motions in dynamical relaxations and discuss their relation to dynamic facilitation. As lattice models tend to keep the minimal but important modeling elements, they are typically much more amenable to analysis. Therefore, we envisage that the DPLM will benefit future theoretical developments, such as the configuration tree theory, towards a more comprehensive understanding of structural glasses.

5.
Phys Rev Lett ; 129(16): 168002, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306762

RESUMO

Particle swaps can drastically accelerate dynamics in glass. The mechanism is expected to be vital for a fundamental understanding of glassy dynamics. To extract defining features, we propose a partial swap model with a fraction ϕ_{s} of swap-initiating particles, which can only swap locally with each other or with regular particles. We focus on the swap-dominating regime. At all temperatures studied, particle diffusion coefficients scale with ϕ_{s} in unexpected power laws with temperature-dependent exponents, consistent with the kinetic picture of glassy dynamics. At small ϕ_{s}, swap initiators, becoming defect particles, induce remarkably typical glassy dynamics of regular particles. This supports defect models of glass.

6.
Soft Matter ; 18(11): 2211-2221, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35226017

RESUMO

Using a distinguishable-particle lattice model based on void-induced dynamics, we successfully reproduce the well-known linear relation between heat capacity and temperature at very low temperatures. The heat capacity is dominated by two-level systems formed due to the strong localization of voids to two neighboring sites, and can be exactly calculated in the limit of ultrastable glasses. Similar but weaker localization at higher temperatures accounts for glass transition. The result supports the conventional two-level tunneling picture by revealing how two-level systems emerge from random particle interactions, which also cause glass transition. Our approach provides a unified framework for relating microscopic dynamics of glasses at room and cryogenic temperatures.

7.
Phys Rev E ; 104(2-1): 024131, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525549

RESUMO

The specific-heat capacity c_{v} of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger c_{v} and a more pronounced hysteresis for fragile glasses than for strong ones. Here we show that these experimental features, including the unusually large magnitude of c_{v} of fragile glasses, are well reproduced by kinetic Monte Carlo and equilibrium study of a distinguishable particle lattice model incorporating a two-state picture of particle interactions. The large c_{v} in fragile glasses is caused by a dramatic transfer of probabilistic weight from high-energy particle interactions to low-energy ones as temperature decreases.

8.
J Chem Phys ; 155(11): 114109, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551526

RESUMO

A systematic study of nonlocal and size effects on the energy transfer of a dipole (e.g., a molecule or a quantum dot) induced by the proximity of a metal slab is presented. Nonlocal effects are accounted for using the hydrodynamic model (HDM). We derive a general relation that connects the energy transfer rate to the linear charge density-density response function of the slab. This function is explicitly evaluated for the HDM and the local Drude model. We show that a thin metal slab can support a series of higher-frequency surface plasma wave (SPW) modes in addition to the normal SPW modes, thanks to the nonlocal effects. These modes markedly alter the response and the energy transfer process, as revealed in the structure of the energy transfer rate in the parameter space. Our findings are important for applications such as the recently developed metal-induced energy transfer imaging, which relies on accurate modeling of the energy transfer rate.

9.
Phys Rev Lett ; 124(9): 095501, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202859

RESUMO

Volume and enthalpy relaxation of glasses after a sudden temperature change has been extensively studied since Kovacs' seminal work. One observes an asymmetric approach to equilibrium upon cooling versus heating and, more counterintuitively, the expansion gap paradox, i.e., a dependence on the initial temperature of the effective relaxation time even close to equilibrium when heating. Here, we show that a distinguishable-particle lattice model can capture both the asymmetry and the paradox. We quantitatively characterize the energetic states of the particle configurations using a physical realization of the fictive temperature called the structural temperature, which, in the heating case, displays a strong spatial heterogeneity. The system relaxes by nucleation and expansion of warmer mobile domains having attained the final temperature, against cooler immobile domains maintained at the initial temperature. A small population of these cooler regions persists close to equilibrium, thus explaining the paradox.

10.
Phys Rev Lett ; 125(26): 265703, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449764

RESUMO

We perform kinetic Monte Carlo simulations of a distinguishable-particle lattice model of structural glasses with random particle interactions. By varying the interaction distribution and the average particle hopping energy barrier, we obtain an extraordinarily wide range of kinetic fragility. A stretching exponent, characterizing structural relaxation, is found to decrease with the kinetic fragility in agreement with experiments. The most fragile glasses are those exhibiting low hopping barriers and, more importantly, dramatic drops of entropies upon cooling toward the glass transition temperatures. The entropy drops reduce possible kinetic pathways and lead to dramatic slowdowns in the dynamics. In addition, the kinetic fragility is shown to correlate with a thermodynamic fragility.

11.
Phys Rev Lett ; 122(8): 086804, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932563

RESUMO

A topological electric quadrupole is a recently proposed concept that extends the theory of electric polarization of crystals to higher orders. Such a quadrupole phase supports topological states localized on both edges and corners. In this work, we show that in a quadrupole phase of a honeycomb lattice, topological helical edge states and pseudospin-polarized corner states appear by making use of a pseudospin degree of freedom related to point group symmetry. Furthermore, we argue that a general condition for the emergence of helical edge states in a (pseudo)spinful quadrupole phase is the existence of either mirror or time-reversal symmetry. Our results offer a way of generating topological helical edge states without spin-orbital couplings.

12.
J Phys Condens Matter ; 29(45): 455002, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28933352

RESUMO

We derive a generic formalism for studying the energy conversion processes in bounded metals. Using this formalism we show that in the collision-less limit the Fermi sea of metals should experience an instability against surface plasma oscillations, which opens for the latter an intrinsic self-amplification channel. The origin of the instability is clarified as arising from novel effects resulting from the translation symetry breaking due to the very presence of surface. The amplification rate of this channel is analytically evaluated on the basis of energy conservation and the effects of losses are discussed. In particular, the unique role played by the surface in energy conversion is unveiled. In contrast with common wisdom and in line with observations, Landau damping is shown as always overcompensated and therefore poses no serious issues in sub-wavelength plasmonics.

13.
Langmuir ; 29(13): 4283-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23461801

RESUMO

In a previous study, we calculated the surface dynamics of noisy viscoelastic supported films by using an adiabatic approximation. An expression was derived for the time-dependent power spectral density (PSD), which was found to produce good agreement with experiment. In this study, we extend the treatment to viscoelastic free-standing films. Two sets of surface capillary normal modes, namely, the squeezing and bending modes, were found. The frequency dispersion relation of the former resembles that of supported films. The latter is distinctively different and diverges at long wavelengths. By incorporating the experimental conditions, we obtained satisfactory agreement between theory and experiment.

14.
J Phys Condens Matter ; 21(7): 075702, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21817335

RESUMO

To address the incompatibility of Zhang-Rice singlet formation and the observed spin glass behavior, an effective model is proposed for the electronic behavior of cuprate materials. The model includes an antiferromagnetic interaction between the spin of the hole in a Zhang-Rice orbital and the spin of the hole on the corresponding copper site. While in the large interaction limit this recovers the t-J model, in the low energy limit the Zhang-Rice singlets are deformed. It is also shown that such deformation can induce random defect ferromagnetic (FM) bonds between adjacent local spins, an effect herein referred to as unusual double exchange, and then spin glass behavior shall result in the case of localized holes. A derivation of the model is also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA