Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 132: 155848, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964157

RESUMO

BACKGROUND: Borneol, a highly lipid-soluble bicyclic terpene mainly extracted from plants, is representative of monoterpenoids. Modern medicine has established that borneol exhibits a range of pharmacological activities and used in the treatment of many diseases, particularly Cardio-cerebrovascular diseases (CVDs). The crucial role in enhancing drug delivery and improving bioavailability has attracted much attention. In addition, borneol is also widely utilized in food, daily chemicals, fragrances, and flavors industries. PURPOSE: This review systematically summarized the sources, pharmacological activities and mechanisms, clinical trial, pharmacokinetics, toxicity, and application of borneol. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. This review will provide a valuable resource for those pursuing researches on borneol inspiring the pharmacological applications in the medicine, food and daily chemical products, and developing of new drugs containing borneol or its derivatives. METHODS: This review searched the keywords ("borneol" or "bornyl esters") and ("pharmacology" or "Traditional Chinese medicine" or "Cardio-cerebrovascular diseases" or "blood-brain barrier" or "ischemic stroke" or "nanomaterials" or "neurodegenerative diseases" or "diabetes" or "toxicity") in Web of Science, PubMed, Google Scholar and China National Knowledge Infrastructure (CNKI) from January 1990 to May 2024. The search was limited to articles published in English and Chinese. RESULTS: Borneol exhibits extensive pharmacological activities including anti-inflammatory effects, analgesia, antioxidation, and has the property of crossing biological barriers and treating CVDs. The intrinsic molecular mechanisms are involved in multiple components, such as regulation of various key factors (including Tumor necrosis factor-α, Nuclear factor kappa-B, Interleukin-1ß, Malondialdehyde), inhibiting transporter protein function, regulating biochemical levels, and altering physical structural changes. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. CONCLUSION: The pharmacological properties and applications of borneol are promising, including anti-inflammatory, analgesic, antimicrobial, and antioxidant properties, as well as enhancing drug delivery and treating CVDs. However, its clinical application is hindered by the limited research on safety, efficacy, and pharmacokinetics. Therefore, this review systemically summarized the advances on pharmacological activities and mechanisms of the borneol. Standardized clinical trials and exploration of synergistic effects with other drugs were also are outlined.


Assuntos
Canfanos , Canfanos/farmacologia , Humanos , Animais , Anti-Inflamatórios/farmacologia
2.
Nat Metab ; 6(5): 933-946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609677

RESUMO

Streptomyces has the largest repertoire of natural product biosynthetic gene clusters (BGCs), yet developing a universal engineering strategy for each Streptomyces species is challenging. Given that some Streptomyces species have larger BGC repertoires than others, we proposed that a set of genes co-evolved with BGCs to support biosynthetic proficiency must exist in those strains, and that their identification may provide universal strategies to improve the productivity of other strains. We show here that genes co-evolved with natural product BGCs in Streptomyces can be identified by phylogenomics analysis. Among the 597 genes that co-evolved with polyketide BGCs, 11 genes in the 'coenzyme' category have been examined, including a gene cluster encoding for the cofactor pyrroloquinoline quinone. When the pqq gene cluster was engineered into 11 Streptomyces strains, it enhanced production of 16,385 metabolites, including 36 known natural products with up to 40-fold improvement and several activated silent gene clusters. This study provides an innovative engineering strategy for improving polyketide production and finding previously unidentified BGCs.


Assuntos
Produtos Biológicos , Família Multigênica , Streptomyces , Produtos Biológicos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Policetídeos/metabolismo , Evolução Molecular , Vias Biossintéticas/genética , Filogenia , Engenharia Metabólica/métodos
5.
Adv Sci (Weinh) ; 11(14): e2306935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321783

RESUMO

The evolution of pathway enzymes enhances the biosynthesis of high-value chemicals, crucial for pharmaceutical, and agrochemical applications. However, unpredictable evolutionary landscapes of pathway genes often hinder successful evolution. Here, the presence of complex epistasis is identifued within the representative naringenin biosynthetic pathway enzymes, hampering straightforward directed evolution. Subsequently, a biofoundry-assisted strategy is developed for pathway bottlenecking and debottlenecking, enabling the parallel evolution of all pathway enzymes along a predictable evolutionary trajectory in six weeks. This study then utilizes a machine learning model, ProEnsemble, to further balance the pathway by optimizing the transcription of individual genes. The broad applicability of this strategy is demonstrated by constructing an Escherichia coli chassis with evolved and balanced pathway genes, resulting in 3.65 g L-1 naringenin. The optimized naringenin chassis also demonstrates enhanced production of other flavonoids. This approach can be readily adapted for any given number of enzymes in the specific metabolic pathway, paving the way for automated chassis construction in contemporary biofoundries.


Assuntos
Escherichia coli , Flavonoides , Escherichia coli/genética , Redes e Vias Metabólicas , Aprendizado de Máquina
8.
ACS Synth Biol ; 13(3): 969-972, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340070

RESUMO

Serratia marcescens has garnered increasing attention as a promising host for valuable compound production. However, the lack of an efficient gene regulation toolkit severely hampers its applications. Here, a library of stationary phase promoters was screened in S. marcescens HBA7 using RNA-seq and RT-qPCR, revealing a 43-fold regulatory range with the red fluorescent protein mKate2 as the reporter. The ß-galactosidase was employed to demonstrate the universality in driving the expression of different proteins. The wide-ranging utility of these promoters in different hosts was demonstrated in Escherichia coli. Moreover, to assess their potential application, the strongest promoter, P2, was employed to express the swrW gene, resulting in a roughly 20-fold increase in serrawettin W1 production in S. marcescens HBQA7ΔswrW. In summary, this study successfully constructed a gradient-strength stationary phase promoter library, providing an effective toolkit for gene regulation and secondary metabolite production in diverse prokaryotes, including S. marcescens and E. coli.


Assuntos
Escherichia coli , Serratia marcescens , Serratia marcescens/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica
9.
Metab Eng ; 81: 100-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000548

RESUMO

Tyrian purple (6,6'-Dibromoindigo) is an ancient precious dye, which possesses remarkable properties as a biocompatible semiconductor material. Recently, biosynthesis has emerged as an alternative for the sustainable production of Tyrian purple from a natural substrate. However, the selectivity issue in enzymatic tryptophan (Trp) and bromotryptophan (6-Br-Trp) degradation was an obstacle for obtaining high-purity Tyrian purple in a single cell biosynthesis. In this study, we present a simplified one-pot process for the production of Tyrian purple from Trp in Escherichia coli (E. coli) using Trp 6-halogenase from Streptomyces toxytricini (SttH), tryptophanase from E. coli (TnaA) and a two-component indole oxygenase from Providencia Rettgeri GS-2 (GS-C and GS-D). To enhance the in vivo solubility and activity of SttH and flavin reductase (Fre) fusion enzyme (Fre-L3-SttH), a chaperone system of GroEL/GroES (pGro7) was introduced in addition to the implementation of a set of optimization strategies, including fine-tuning the expression vector, medium, concentration of bromide salt and inducer. To overcome the selectivity issue and achieve a higher conversion yield of Tyrian purple with minimal indigo formation, we applied the λpL/pR-cI857 thermoinducible system to temporally control the bifunctional fusion enzyme of TnaA and monooxygenase GS-C (TnaA-L3-GS-C). Through optimization of the fermentation process, we were able to achieve a Tyrian purple titer of 44.5 mg L-1 with minimal indigo byproduct from 500 µM Trp. To the best of our knowledge, this is the first report of the selective production of Tyrian purple in E. colivia a one-pot process.


Assuntos
Escherichia coli , Índigo Carmim , Índigo Carmim/metabolismo , Escherichia coli/metabolismo , Indóis/metabolismo , Oxigenases de Função Mista/metabolismo
10.
Nat Commun ; 14(1): 8211, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081905

RESUMO

Prediction of enzyme kinetic parameters is essential for designing and optimizing enzymes for various biotechnological and industrial applications, but the limited performance of current prediction tools on diverse tasks hinders their practical applications. Here, we introduce UniKP, a unified framework based on pretrained language models for the prediction of enzyme kinetic parameters, including enzyme turnover number (kcat), Michaelis constant (Km), and catalytic efficiency (kcat / Km), from protein sequences and substrate structures. A two-layer framework derived from UniKP (EF-UniKP) has also been proposed to allow robust kcat prediction in considering environmental factors, including pH and temperature. In addition, four representative re-weighting methods are systematically explored to successfully reduce the prediction error in high-value prediction tasks. We have demonstrated the application of UniKP and EF-UniKP in several enzyme discovery and directed evolution tasks, leading to the identification of new enzymes and enzyme mutants with higher activity. UniKP is a valuable tool for deciphering the mechanisms of enzyme kinetics and enables novel insights into enzyme engineering and their industrial applications.


Assuntos
Biotecnologia , Temperatura , Catálise , Cinética
11.
Int J Biol Macromol ; 253(Pt 7): 127377, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37839598

RESUMO

TAs, including hyoscyamine and scopolamine, were used to treat neuromuscular disorders ranging from nerve agent poisoning to Parkinson's disease. Tropinone reductase I (TR-I; EC 1.1.1.206) catalyzed the conversion of tropinone into tropine in the biosynthesis of TAs, directing the metabolic flow towards hyoscyamine and scopolamine. Tropinone reductase II (TR-II; EC 1.1.1.236) was responsible for the conversion of tropinone into pseudotropine, diverting the metabolic flux towards calystegine A3. The regulation of metabolite flow through both branches of the TAs pathway seemed to be influenced by the enzymatic activity of both enzymes and their accessibility to the precursor tropinone. The significant interest in the utilization of metabolic engineering for the efficient production of TAs has highlighted the importance of TRs as crucial enzymes that govern both the direction of metabolic flow and the yield of products. This review discussed recent advances for the TRs sources, properties, protein structure and biocatalytic mechanisms, and a detailed overview of its crucial role in the metabolism and synthesis of TAs was summarized. Furthermore, we conducted a detailed investigation into the evolutionary origins of these two TRs. A prospective analysis of potential challenges and applications of TRs was presented.


Assuntos
Hiosciamina , Sequência de Aminoácidos , Tropanos/química , Tropanos/metabolismo , Escopolamina
12.
Int J Biol Macromol ; 253(Pt 7): 127414, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838135

RESUMO

Short-chain dehydrogenase/reductase (SDR) acts as a biocatalyst in the synthesis of chiral alcohols with high optical purity. Herein, we achieved immobilization via crosslinking on novel magnetic metal-organic framework nanoparticles with a three-layer shell structure (Fe3O4@PDA@Cu (PABA)). The results of scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy confirmed the morphology and cross-linking property of immobilized SDR, which was more durable, stable, and reusable and exhibited better kinetic performance than free enzyme. The SDR and glucose dehydrogenase (GDH) were co-immobilized and then used for the asymmetric reduction of COBE and ethyl 2-oxo-4-phenylbutanoate (OPBE). These finding suggest that enzymes immobilized on novel MOF nanoparticles can serve as promising biocatalysts for asymmetric reduction prochiral ketones into chiral alcohols.


Assuntos
Cetonas , Estruturas Metalorgânicas , Cetonas/química , Álcoois/química , Enzimas Imobilizadas/química , Fenômenos Magnéticos , Oxirredutases
13.
Appl Microbiol Biotechnol ; 107(1): 125-135, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36441208

RESUMO

Chiral α-methylbenzylamine and α-phenylethanol are important building blocks for the industrial production of optically active drugs, bioactive compounds. Methods for the simultaneous synthesis of chiral α-methylbenzylamine and α-phenylethanol remain rare. Herein, a biocatalytic redox cascade reaction composed of ω-transaminase, aldo-keto reductase, and glutamate dehydrogenase for chiral α-methylbenzylamine and α-phenylethanol synthesis from racemic α-methylbenzylamine was constructed. A novel ω-transaminase and two different chiral aldo-keto reductases were demonstrated in the cascade reaction. The cosubstrate and redox equivalents were regenerated simultaneously by glutamate dehydrogenase. Using the approach, (R)-α-phenylethanol, (S)-α-phenylethanol, and (R)-α-methylbenzylamine were prepared with excellent stereoselectivity (ee > 99.7%). Furthermore, semi-preparative-scale biotransformation of racemic α-methylbenzylamine was conducted. The production of (R)-α-phenylethanol reached 26.05 mM at 24 h, and the production of (S)-α-phenylethanol reached 25.44 mM at 32 h. Taken together, a novel idea was proposed for the efficient and green synthesis of chiral α-methylbenzylamine and α-phenylethanol, which had great potential for industrial application. KEY POINTS: • Excellent stereoselectivity chiral α-methylbenzylamine and α-phenylethanol were synthesized. • A novel ω-transaminase demonstrated the catalysis toward (S)-α-methylbenzylamine. • Two novel aldo-keto reductases demonstrated the conversion toward acetophenone.


Assuntos
Álcool Feniletílico , Glutamato Desidrogenase/metabolismo , Transaminases/metabolismo , Oxirredução , Aldo-Ceto Redutases/metabolismo , Estereoisomerismo
14.
Pharmacol Res ; 185: 106458, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152740

RESUMO

Our initial studies detected elevated levels of 3,4-dihydroxyphenyllactic acid (DHPLA) in urine samples of patients with severe heart disease when compared with healthy subjects. Given the reported anti-inflammatory properties of DHPLA and related dihydroxylated phenolic acids (DPAs), we embarked on an exploratory multi-centre investigation in patients with no urinary tract infections to establish the possible pathophysiological significance and therapeutic implications of these findings. Chinese and Caucasian patients being treated for severe heart disease or those conditions associated with inflammation (WBC ≥ 10 ×109/L or hsCRP ≥ 3.0 mg/L) and/or hypoxia (PaO2 ≤ 75 mmHg) were enrolled; their urine samples were analyzed by HPLC, HPLC-MS, GC-MS and biotransformation assays. DHPLA was detected in urine samples of patients, but undetectable in healthy volunteers. Dynamic monitoring of inpatients undergoing treatment showed their DHPLA levels declined in proportion to their clinical improvement. In DHPLA-positive patients' fecal samples, Proteus vulgaris and P. mirabilis were more abundant than healthy volunteers. In culture, these gut bacteria were capable of reversible interconversion between DOPA and DHPLA. Furthermore, porcine and rodent organs were able to metabolize DOPA to DHPLA and related phenolic acids. The elevated levels of DHPLA in these patients suggest bioactive DPAs are generated de novo as part of a human's defense mechanism against disease. Because DHPLA isolated from Radix Salvia miltiorrhizae has a multitude of pharmacological activities, these data underpin the scientific basis of this medicinal plant's ethnopharmacological applications as well as highlighting the therapeutic potential of endogenous, natural or synthetic DPAs and their derivatives in humans.


Assuntos
Cardiopatias , Inflamação , Humanos , Suínos , Animais , Hipóxia , Di-Hidroxifenilalanina
15.
Appl Microbiol Biotechnol ; 106(17): 5479-5493, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35931895

RESUMO

Spermidine is an important polyamine that can be used for the synthesis of various bioactive compounds in the food and pharmaceutical fields. In this study, a novel efficient whole-cell biocatalytic method with an NADPH self-sufficient cycle for spermidine biosynthesis was designed and constructed by co-expressing homoserine dehydrogenase (HSD), carboxyspermidine dehydrogenase (CASDH), and carboxyspermidine decarboxylase (CASDC). First, the enzyme-substrate coupled cofactor regeneration system from co-expression of NADP+-dependent ScHSD and NADPH-dependent AfCASDH exactly provides an efficient method for cofactor cycling. Second, we identified and characterized a putative CASDC with high decarboxylase activity from Butyrivibrio crossotus DSM 2876; it showed an optimum temperature of 35 °C and an optimum pH of 7.0, which make it better suited for the designed synthetic route. Subsequently, the protein expression level of each enzyme was optimized through the variation of the gene copy number, and a whole-cell catalyst with high catalytic efficiency was constructed successfully. Finally, a yield of 28.6 mM of spermidine was produced in a 1-L scale of E. coli whole-cell catalytic system with a 95.3% molar conversion rate after optimization of temperature, the ratio of catalyst-to-substrate, and the amount of NADP+, and a productivity of 0.17 g·L-1·h-1 was achieved. In summary, this novel pathway of constructing a whole-cell catalytic system from L-homoserine and putrescine could provide a green alternative method for the efficient synthesis of spermidine. KEY POINTS: • A novel pathway for spermidine biosynthesis was developed in Escherichia coli. • The enzyme-substrate coupled system provides an NADPH self-sufficient cycle. • Spermidine with 28.6 mM was obtained using an optimized whole-cell system.


Assuntos
Carboxiliases , Espermidina , Escherichia coli , Homosserina , NADP , Putrescina
16.
Enzyme Microb Technol ; 160: 110100, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35872508

RESUMO

An engineered Escherichia coli was constructed by co-expressing L-amino acid deaminase, α-keto acid decarboxylase, alcohol dehydrogenase, and glucose dehydrogenase through two plasmids for tyrosol production. The activity of the rate-limiting enzyme L-amino acid deaminase from Cosenzaea myxofaciens (CmAAD) toward tyrosine was improved by structure-guided modification. The enzyme activity of triple mutant CmAAD V438G/K147V/R151E toward tyrosine was ~5.12-fold higher than that of the wild-type CmAAD. Secondly, the plasmid copy numbers and the gene orders were optimized to improve the titer of tyrosol. Finally, the recombinant strain CS-6 transformed 10 mM tyrosine into 9.56 ± 0.64 mM tyrosol at 45 â„ƒ, and the space-time yield reached 0.478 mM·L-1·h-1. This study proposes a novel idea for the efficient and natural production of tyrosol, which has great potential for industrial application.


Assuntos
Escherichia coli , Tirosina , Aminoácidos/metabolismo , Biotransformação , Escherichia coli/metabolismo , Engenharia Metabólica , Álcool Feniletílico/análogos & derivados , Tirosina/metabolismo
17.
Front Bioeng Biotechnol ; 10: 1109929, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704308

RESUMO

Tyrian purple, mainly composed of 6, 6'-dibromoindigo, is a precious dye extracted from sea snails. In this study, we found Tyrian purple can be selectively produced by a bacterial strain GS-2 when fed with 6-bromotryptophan in the presence of tryptophan. This GS-2 strain was then identified as Providencia rettgeri based on bacterial genome sequencing analysis. An indole degradation gene cluster for indole metabolism was identified from this GS-2 strain. The heterologous expression of the indole degradation gene cluster in Escherichia coli BL21 (DE3) and in vitro enzymatic reaction demonstrated that the indole biodegradation gene cluster may contribute to selectively biosynthesizing Tyrian purple. To further explore the underlying mechanism of the selectivity, we explored the intermediates in this indole biodegradation pathway using liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS), which indicated that the indole biodegradation pathway in Providencia rettgeri is the catechol pathway. Interestingly, the monooxygenase GS-C co-expressed with its corresponding reductase GS-D in the cluster has better activity for the biosynthesis of Tyrian purple compared with the previously reported monooxygenase from Methylophaga aminisulfidivorans (MaFMO) or Streptomyces cattleya cytochrome P450 enzyme (CYP102G4). This is the first study to show the existence of an indole biodegradation pathway in Providencia rettgeri, and the indole biodegradation gene cluster can contribute to the selective production of Tyrian purple.

18.
Front Microbiol ; 13: 1070110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605511

RESUMO

Under illumination, the fungal secondary metabolites, perylenequinones (PQs) react with molecular oxygen to generate reactive oxygen species (ROS), which, in excess can damage cellular macromolecules and trigger apoptosis. Based on this property, PQs have been widely used as photosensitizers and applied in pharmaceuticals, which has stimulated research into the discovery of new PQs and the elucidation of their biosynthetic pathways. The PQs-associated literature covering from April 1967 to September 2022 is reviewed in three sections: (1) the sources, structural diversity, and biological activities of microbial PQs; (2) elucidation of PQ biosynthetic pathways, associated genes, and mechanisms of regulation; and (3) advances in pathway engineering and future potential strategies to modify cellular metabolism and improve PQ production.

19.
J Sci Food Agric ; 102(9): 3858-3868, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34932223

RESUMO

BACKGROUND: Carboxyspermidine (C-Spd) is a potentially valuable polyamine carboxylate compound and an excellent building block for spermidine synthesis, which is a critical polyamine with significant implications for human health and longevity. C-Spd can also be used to prepare multivalent cationic lipids and modify nucleoside probes. Because of these positive effects on human health, C-Spd is of considerable interest as a food additive and pharmaceutical target. RESULTS: A putative gene afcasdh from Agrobacterium fabrum str. C58, encoding carboxyspermidine dehydrogenase with C-Spd biosynthesis activity, was synthesized and transformed into Escherichia coli BL21 (DE3) for overexpression. The recombinant AfCASDH was purified and fully characterized. The optimum temperature and pH for the recombinant enzyme were 30 °C and 7.5, respectively. The coupled catalytic strategy of AfCASDH and various NADPH regeneration systems were developed to enhance the efficient production of C-Spd compound. Finally, the maximum titer of C-Spd production successfully achieved 1.82 mmol L-1 with a yield of 91% by optimizing the catalytic conditions. CONCLUSION: A novel AfCASDH from A. fabrum str. C58 was characterized that could catalyze the formation of C-Spd from putrescine and l-aspartate-ß-semialdehyde (L-Asa). A whole-cell catalytic strategy coupled with NADPH regeneration was established successfully for C-Spd biosynthesis for the first time. The coupled system indicated that AfCASDH might provide a feasible method for the industrial production of C-Spd. © 2021 Society of Chemical Industry.


Assuntos
Agrobacterium , Poliaminas , Espermidina , Agrobacterium/enzimologia , NADP , Oxirredutases , Espermidina/análogos & derivados
20.
Int J Biol Macromol ; 165(Pt A): 796-803, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010268

RESUMO

Shiraia bambusicola exhibits an excellent capability to produce high-value pharmacological drugs, such as hypocrellin. However, less effective molecular tools hamper the processes to discover or exploit these metabolites. To address this issue, the more effective CRISPR/Cas9 system was constructed by optimizing the sgRNA transcription elements and disrupting the endogenous non-homologous end-joining pathway. These tactics prompted the gene-targeting frequency of 100% and simultaneously multiplex genome editing in S. bambusicola. This optimal CRISPR system encouraged us to rewire the entire hypocrellin flux and improve the yield by orchestrating the substrate pool supply, the central hypocrellin pathway, and the antioxidant system. Thus, 8632 mg/L hypocrellin was obtained, resulting in a 12-fold increase than that of the wild-type strain. This engineered S. bambusicola can still endure oxidative stresses from higher target metabolites and sustain an excellent biological activity. This study provides a whole conception to establish the more efficient genome-editing system. Higher conserved transcription elements for sgRNA expressions inspire us to adopt this system for gene modifications of other filamentous fungi. The rational and global biosystems outline will offer guidance to modulate metabolite productivity in other filamentous fungi.


Assuntos
Ascomicetos , Sistemas CRISPR-Cas , Edição de Genes , Perileno/análogos & derivados , Fenol/metabolismo , Quinonas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Perileno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA