Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 458: 140275, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964102

RESUMO

Enzyme-inhibited electrochemical sensor is a promising strategy for detecting organophosphorus pesticides (OPs). However, the poor stability of enzymes and the high oxidation potential of thiocholine signal probe limit their potential applications. To address this issue, an indirect strategy was proposed for highly sensitive and reliable detection of chlorpyrifos by integrating homogeneous reaction and heterogeneous catalysis. In the homogeneous reaction, Hg2+ with low oxidation potential was employed as signal probe for chlorpyrifos detection since its electroactivity can be inhibited by thiocholine, which was the hydrolysate of acetylthiocholine catalyzed by acetylcholinesterase. Additionally, Co,N-doped hollow porous carbon nanocage@carbon nanotubes (Co,N-HPNC@CNT) derived from ZIF-8@ZIF-67 was utilized as high-performance electrode material to amplify the stripping voltammetry signal of Hg2+. Thanks to their synergistic effect, the sensor exhibited outstanding sensing performance, excellent stability and good anti-interference ability. This strategy paves the way for the development of high-performance OP sensors and their application in food safety.


Assuntos
Técnicas Eletroquímicas , Compostos Organofosforados , Praguicidas , Praguicidas/análise , Praguicidas/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Catálise , Compostos Organofosforados/análise , Compostos Organofosforados/química , Nanotubos de Carbono/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Limite de Detecção , Clorpirifos/análise , Clorpirifos/química , Eletrodos , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Contaminação de Alimentos/análise , Mercúrio/análise , Mercúrio/química
2.
J Fungi (Basel) ; 10(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535191

RESUMO

Cadmium-contaminated soil significantly threatens global food security and human health. This scenario gives rise to significant worries regarding widespread environmental pollution. Biochar and arbuscular mycorrhizal fungi (AMF) can effectively immobilize cadmium in the soil in an environmentally friendly way. Existing studies have separately focused on the feasibility of each in remediating polluted soil. However, their association during the remediation of cadmium-polluted soils remains unclear. This review paper aims to elucidate the potential of biochar, in conjunction with AMF, as a strategy to remediate soil contaminated with cadmium. This paper comprehensively analyzes the current understanding of the processes in cadmium immobilization in the soil environment by examining the synergistic interactions between biochar and AMF. Key factors influencing the efficacy of this approach, such as biochar properties, AMF species, and soil conditions, are discussed. The influences of biochar-AMF interactions on plant growth, nutrient uptake, and overall ecosystem health in cadmium-contaminated environments are highlighted. This review indicates that combining biochar and AMF can improve cadmium immobilization. The presence of AMF in the soil can create numerous binding sites on biochar for cadmium ions, effectively immobilizing them in the soil. Insights from this review contribute to a deeper understanding of sustainable and eco-friendly approaches to remediate cadmium-contaminated soils, offering potential applications in agriculture and environmental management.

3.
Molecules ; 28(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005196

RESUMO

In view of the serious side effects of chlortetracycline (CTC) on the human body, it is particularly important to develop rapid, sensitive, and selective technologies for the detection of CTC in food. In this work, a molecularly imprinted electrochemical sensor with [Fe(CN)6]3-/4- as signal probe was proposed for the highly sensitive and selective detection of CTC. For this purpose, TiO2, which acts as an interlayer scaffold, was uniformly grown on the surface of Ti3C2Tx sheets through a simple two-step calcination process using Ti3C2Tx as the precursor to effectively avoid the stacking of Ti3C2Tx layers due to hydrogen bonding and van der Waals forces. This endowed TiO2@Ti3C2Tx with large specific surface, abundant functional sites, and rapid mass transfer. Then, polypyrrole molecularly imprinted polymers (MIPs) with outstanding electrical conductivity were modified on the surface of TiO2@Ti3C2Tx via simple electro-polymerization, where the pyrrole was employed as a polymeric monomer and the CTC provided a source of template molecules. This will not only provide specific recognition sites for CTC, but also facilitate electron transport on the electrode surface. The synergistic effects between TiO2@Ti3C2Tx and polypyrrole MIPs afforded the TiO2@Ti3C2Tx/MIP-based electrochemical sensor excellent detection properties toward CTC, including ultra-low limits of detection (LOD) (0.027 nM), a wide linear range (0.06-1000 nM), and outstanding stability, reproducibility, selectivity, and feasibility in real samples. The results indicate that this strategy is feasible and will broaden the horizon for highly sensitive and selective detection of CTC.


Assuntos
Clortetraciclina , Grafite , Impressão Molecular , Humanos , Polímeros/química , Titânio , Impressão Molecular/métodos , Grafite/química , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Pirróis/química , Limite de Detecção , Polímeros Molecularmente Impressos , Eletrodos
4.
Nanotechnology ; 34(50)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37725965

RESUMO

In this work, an electrochemical sensor based on ion-imprinted polymer/Au nanoparticles/porous biochar (IIP/AuNPs/PBC) composite was proposed for the highly selective and sensitive detection of Pb2+. In this work, poly (thionine) (pTHI) served simultaneously as imprinted polymer and reference probe. It could not only realize the specific detection of Pb2+, but also provide an internal reference signal to eliminate the influence of human and environmental factors on the detection signal and further improve the stability of the sensor. In addition, the AuNPs/PBC composite with large specific surface area, excellent electron transport and electrocatalytic performance could effectively enhance the detection signal as a carrier material. At the same time, the AuNPs on the PBC surface would promote the formation of uniform and stable IIP through Au-S bonds. The synergistic effect between IIP, AuNPs/PBC and ratiometric signal mode gave the Pb2+sensor excellent performance, including a wide linear range (0.1-1000µg l-1), low detection limit (0.03µg l-1, S/N = 3), excellent selectivity and stability. All these results indicate that the proposed sensor could provide a meaningful reference for highly selective detection of heavy metal ions (HMIs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA