Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Hematol Oncol ; 12(1): 94, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946295

RESUMO

Recurrence is one of the main causes of treatment failure in early-stage non-small cell lung cancer (NSCLC). However, there are no predictors of the recurrence of early-stage NSCLC, and the molecular mechanism of its recurrence is not clear. In this study, we used clinical sample analysis to demonstrate that low levels of expression of precursor surfactant protein B (pro-SFTPB) in primary NSCLC tissue compared to their adjacent tissues are closely correlated with recurrence and poor prognosis in early-stage NSCLC patients. In vitro and in vivo experiments showed that downregulation of pro-SFTPB expression activates the Akt pathway by upregulating PGK1, which promotes metastasis and tumorigenicity in NSCLC cells. We then demonstrated that pro-SFTPB suppresses the formation of the ADRM1/hRpn2/UCH37 complex by binding to ADRM1, which inhibits PGK1 deubiquitination, thus accelerating ubiquitin-mediated PGK1 degradation. In summary, our findings indicate that low expression of pro-SFTPB in primary NSCLC compared to their adjacent tissue has potential as a predictor of recurrence and poor prognosis in early-stage NSCLC. Mechanistically, downregulation of pro-SFTPB attenuates inhibition of ADRM1-deubiquitinated PGK1, resulting in elevated levels of PGK1 protein; this activates the Akt pathway, ultimately leading to the progression of early-stage NSCLC.

2.
Inflammopharmacology ; 31(4): 2037-2047, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37074600

RESUMO

Acute lung injury (ALI) is an acute and devastating disease caused by systemic inflammation e.g. patients infected with bacteria and viruses such as SARS-CoV-2 have an unacceptably high mortality rate. It has been well documented that endothelial cell damage and repair play a central role in the pathogenesis of ALI because of its barrier function. Nevertheless, the leading compounds that effectively accelerate endothelial cell repair and improve barrier dysfunction in ALI are largely unknown. In the present study, we found that diosmetin had promising characteristics to inhibit the inflammatory response and accelerate the repair of endothelial cells. Our results indicated that diosmetin accelerated wound healing and barrier repair by improving the expression of the barrier-related proteins, including zonula occludens-l (ZO-1) and occludin, in human umbilical vein endothelial cells (HUVECs) treated with lipopolysaccharide (LPS). Meanwhile, diosmetin administration significantly inhibited inflammatory response by decreasing the content of TNFα and IL-6 in the serum, alleviated lung injury by reducing lung wet/dry (W/D) ratio and histologic score, improved endothelial hyperpermeability by decreasing protein levels and neutrophil infiltration in the bronchoalveolar lavage fluid (BALF) and increasing ZO-1 and occludin expression in the lung tissues of LPS-treated mice. Mechanistically, diosmetin also mediated the expression of Rho A and ROCK1/2 in HUVECs treated with LPS, and fasudil, a Rho A inhibitor remarkably inhibited the role of diosmetin in ZO-1 and occludin proteins. All these findings of this study revealed that diosmetin can be an effective protector of lung injury and the Rho A/ROCK1/2 signal pathway plays a pivotal role in diosmetin accelerating barrier repair in ALI.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Humanos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Ocludina/farmacologia , COVID-19/complicações , SARS-CoV-2/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão , Células Endoteliais da Veia Umbilical Humana/metabolismo , Quinases Associadas a rho/metabolismo
3.
Adv Sci (Weinh) ; 10(11): e2203573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36757050

RESUMO

Recurrence is a challenge to survival after the initial treatment of esophageal squamous cell carcinoma (ESCC). But, its mechanism remains elusive and there are currently no biomarkers to predict postoperative recurrence. Here, the possibility of sterile alpha motif domain-containing protein 9 (SAMD9) as a predictor of postoperative recurrence of ESCC is evaluated and the molecular mechanisms by which SAMD9 promotes ESCC recurrence are elucidated. The authors found that the high level of SAMD9 is correlated with postoperative recurrence and poor prognosis of ESCC. Overexpression of SAMD9 promotes tumor stemness, angiogenesis, and EMT, while downregulation of SAMD9 reduced these phenotypes. Mechanistically, it is found that SAMD9 stimulated ubiquitination-mediated glycogen synthase kinase-3 beta (GSK-3ß) degradation by interaction with myosin-9 (MYH9) and TNF receptor-associated factor 6 (TRAF6), which in turn activated Wnt/ß-catenin pathway. Further, the authors demonstrated that silencing SAMD9 inhibited lung metastasis and tumor formation in vivo. Finally, the authors found that silencing MYH9 or ß-catenin, or overexpressing GSK-3ß inhibited SAMD9-stimulated ESCC cell stemness, EMT, angiogenesis, metastasis, and tumorigenicity. Together, the findings indicate that the SAMD9/MYH9/GSK3ß/ß-catenin axis promotes ESCC postoperative recurrence and that SAMD9 is a crucial target for ESCC therapy. Additionally, SAMD9 has the potential as a predictor of postoperative recurrence in ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Via de Sinalização Wnt , Humanos , beta Catenina/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Via de Sinalização Wnt/genética
4.
Adv Biol (Weinh) ; 7(4): e2200236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634922

RESUMO

Severe trauma and hemorrhaging are often accompanied by delayed cutaneous wound healing. Soybean isoflavone is a natural phytoestrogen that has attracted great attention due to its protective effects against various injuries. Endothelial progenitor cells (EPCs) are precursor cells with directional differentiation characteristics. This study is to determine whether genistein (GEN), an isoflavone in soybean products, benefits wound healing in hemorrhagic shock (HS) rats by promoting EPC homing and to investigate the underlying mechanisms. In this study, it is found that GEN promotes skin wound healing in HS rats, which is due at least partly to the mobilization of endogenous EPCs to the injury site via angiotensin II (Ang-II), stromal cell-derived factor-1alpha (SDF-1α), and transforming growth factor beta(TGF-ß) signaling.


Assuntos
Células Progenitoras Endoteliais , Choque Hemorrágico , Ratos , Animais , Células Progenitoras Endoteliais/metabolismo , Genisteína/farmacologia , Genisteína/uso terapêutico , Genisteína/metabolismo , Glycine max , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Cicatrização
5.
Chin J Traumatol ; 26(3): 139-146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36344366

RESUMO

PURPOSE: High explosives are used to produce blast waves to study their biological effects. The lungs are considered as the critical target organ in blast-effect studies. The degree of lung hemorrhaging is related to both the explosive power and the increased lung weight. We studied the characteristics of the biological effects from an air explosion of a thermobaric bomb in a high-altitude environment and the lethality and lung injury severity of goats in different orientations and distances. METHODS: Goats were placed at 2.5, 3, 4, and 5 m from the explosion center and exposed them to an air blast at an altitude of 4700-meter. A group of them standing oriented to the right side and the other group seated facing the explosion center vertically. The lung injuries were quantified according to the percentage of surface area contused, and using the pathologic severity scale of lung blast injury (PSSLBI) to score the 4 injury categories (slight, moderate, serious and severe) as 1, 2, 3, and 4, respectively. The lung coefficient (lung weight [g]/body weight [kg]) was the indicator of pulmonary edema and was related to lung injury severity. Blast overpressure data were collected using blast test devices placed at matching locations to represent loadings to goats. All statistical analyses were performed using SPSS, version 26.0, statistical software (SPSS, Inc., Chicago, IL, USA). RESULTS: In total, 127 goats were involved in this study. Right-side-standing goats had a significantly higher mortality rate than those seated vertical-facing (p < 0.05). At the 2.5 m distance, the goat mortality was nearly 100%, whereas at 5 m, all the goats survived. Lung injuries of the right-side-standing goats were 1 - 2 grades more serious than those of seated goats at the same distances, the scores of PSSLBI were significantly higher than the seated vertical-facing goats (p < 0.05). The lung coefficient of the right-side-standing goats were significantly higher than those of seated vertical-facing (p < 0.05). Mortality, PSSLBI, and the lung coefficient results indicated that the right-side-standing goats experienced severer injuries than the seated vertical-facing goats, and the injuries were lessened as the distance increased. The blast overpressure was consistent with these results. CONCLUSION: The main killing factors of the thermobaric bomb in the high-altitude environment were blast overpressure, blast wind propulsions and burn. The orientation and distances of the goats significantly affected the blast injury severity. These results may provide a research basis for diagnosing, treating and protecting against injuries from thermobaric explosions.


Assuntos
Traumatismos por Explosões , Lesão Pulmonar , Animais , Lesão Pulmonar/etiologia , Cabras , Explosões , Pulmão/patologia
6.
Pharmacol Res ; 187: 106636, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586643

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality and limited therapeutic options. The immune checkpoint PD1/PD-L1 axis is related to the pathogenesis of pulmonary fibrosis, and upregulated expression levels of PD-L1 have been demonstrated in IPF patients. However, the mechanism of PD-L1 in pulmonary fibrosis is not fully understood. Here, we demonstrated upregulated expression of PD-L1 in fibrotic lung tissues and sera of IPF patients. Bleomycin (BLM) treatment induced PD-L1 upregulation, EMT (Epithelial-Mesenchymal Transition) and fibrosis-like morphology changes in human pulmonary alveolar epithelial cells (HPAEpiCs). Silencing PD-L1 attenuated BLM-induced EMT and fibrosis-like morphology changes in HPAEpiCs. In addition, we identified that PD-L1 directly binds to vimentin and inhibits vimentin ubiquitination, thereby increasing vimentin levels in HPAEpiCs. Silencing of vimentin inhibited BLM- and PD-L1-induced fibrosis in HPAEpiCs. The correlation between PD-L1 and EMT or vimentin expression was further confirmed in clinical samples and animal models. Finally, we used BLM- and paraquat-induced pulmonary fibrosis animal models to confirm the anti-pulmonary fibrosis effects of PD-L1 silencing. Taken together, our findings suggest that upregulated PD-L1 stimulates EMT of alveolar epithelial cells by increasing vimentin levels by inhibiting vimentin ubiquitination, thereby contributing to pulmonary fibrosis.


Assuntos
Antígeno B7-H1 , Fibrose Pulmonar Idiopática , Animais , Humanos , Regulação para Cima , Vimentina/genética , Vimentina/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Pulmão , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Transição Epitelial-Mesenquimal , Bleomicina
7.
Artigo em Inglês | MEDLINE | ID: mdl-35497924

RESUMO

Background: Pulmonary fibrosis is difficult to treat. Early diagnosis and finding potential drug therapy targets of pulmonary fibrosis are particularly important. There were still various problems with existing pulmonary fibrosis markers, so it is particularly important to find new biomarkers and drug treatment targets. m6A (N6,2'-O-dimethyladenosine) RNA methylation was the cause of many diseases, and it is regulated by m6A methylation regulators. So, whether RNA methylation regulators can be a diagnostic marker and potential drug therapy target of early pulmonary fibrosis needs to be explored. Materials and Methods: Using GSE110147 and GSE33566 in the GEO database to predict the m6A methylation regulators that may be related to the development of pulmonary fibrosis, we used 10 mg/ml bleomycin to induce mouse pulmonary fibrosis models and human pulmonary fibrosis samples, to confirm whether this indicator can be an early diagnostic marker of pulmonary fibrosis. Results: According to the database prediction results, METTL3 can predict the occurrence and development of pulmonary fibrosis, and the results of MASSON and HE staining show that the fibrosis model of mice is successful, and the fibrosis of human samples is obvious. The results of immunohistochemistry showed that the expression of METTL3 was significantly reduced in pulmonary fibrosis. Conclusions: The m6A methylation regulator METTL3 can be considered as an important biomarker for diagnosing pulmonary fibrosis occurrence, furthermore it could be considered as a drug target because of its low expression in pulmonary fibrosis.

8.
Bioprocess Biosyst Eng ; 45(6): 1047-1055, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487994

RESUMO

Theaflavin (TF), a chemical component important in measuring the quality of fermented tea, has a strong natural antioxidant effect and many pharmacological functions. Enzymatic oxidation has become a widely used method for preparing TFs at the current research stage. Using plant exogenous polyphenol oxidase (PPO) to enzymatically synthesize TFs can significantly increase yield and purity. In this study, tea polyphenols were used as the reaction substrate to discuss the optimal synthesis conditions of potato PPO enzymatic synthesis of theaflavins and the main products of enzymatic synthesis of TFs. The optimal enzymatic synthesis conditions were as follows: pH of the reaction system was 5.5, reaction time was 150 min, substrate concentration was 6.0 mg/mL, reaction temperature was 20 °C, and the maximum amount of TFs produced was 651.75 µg/mL. At the same time, high-performance liquid chromatography was used to determine the content of theaflavins and catechins in the sample to be tested, and the dynamic changes and correlations of the main catechins and theaflavins in the optimal enzymatic system were analyzed. The results showed that epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) are all the main substrates synthesis of TFs. The main substrate of TFs and its strongest enzymatic catalytic effect on EGCG make theaflavin-3,3'-digallate (TFDG) the most important synthetic monomer. In this study, theaflavins were synthesized by polyphenol oxidase catalysis, which laid a foundation for industrialization of theaflavins.


Assuntos
Catequina , Solanum tuberosum , Antioxidantes , Biflavonoides , Catequina/química , Catequina/farmacologia , Catecol Oxidase , Chá/química
9.
Mol Ther ; 30(2): 621-631, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547468

RESUMO

Cancer cells evade immune detection via programmed cell death 1/programmed cell death-ligand 1 (PD-1/PD-L1) interactions that inactivate T cells. PD-1/PD-L1 blockade has become an important therapy in the anti-cancer armamentarium. However, some patients do not benefit from PD-1/PD-L1 blockade despite expressing PD-L1. Here, we screened 101 gastric cancer (GC) patients at diagnosis and 141 healthy control subjects and reported one such subpopulation of GC patients with rs17718883 polymorphism in PD-L1, resulting in a nonsense P146R mutation. We detected rs17718883 in 44% of healthy control subjects, and rs17718883 was associated with a low susceptibility to GC and better prognosis in GC patients. Structural analysis suggests that the mutation weakens the PD-1:PD-L1 interaction. This was supported by co-culture experiments of T cells, with GC cells showing that the P146R substitution results in interferon (IFN)-γ secretion by T cells and enables T cells to suppress GC cell growth. Similar results with animal gastric tumor models were obtained in vivo. PD-1 monoclonal antibody treatment did not enhance the inhibitory effect of T cells on GC cells expressing PD-L1P146Rin vitro or in vivo. This study suggests that rs17718883 is common and may be used as a biomarker for exclusion from PD-1/PD-L1 blockade therapy.


Assuntos
Neoplasias Gástricas , Animais , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia , Linfócitos T/metabolismo
10.
J Exp Clin Cancer Res ; 40(1): 220, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210327

RESUMO

BACKGROUND: Metastasis is a major challenge in cervical cancer treatment. Previous studies have shown that the dual functional protein apurinic/apyrimidinic endonuclease 1 (APE1) promotes tumor metastasis and is overexpressed in cervical cancer. However, the biological role and mechanism of APE1 in cervical cancer metastasis have rarely been studied. METHODS: We used gene set enrichment analysis (GSEA) to determine the APE1-related signaling pathways in cervical cancer. To investigate the role and mechanism of APE1 in cervical cancer metastasis and invasion, immunohistochemistry, immunofluorescence, western blotting, secondary structure prediction, coimmunoprecipitation, luciferase reporter, and electrophoretic mobility shift assays were performed. The inhibitory effects of the APE1 redox function inhibitor APX3330 on cervical cancer metastasis were evaluated using animal models. RESULTS: Clinical data showed that high expression of APE1 was associated with lymph node metastasis in cervical cancer patients. GSEA results showed that APE1 was associated with epithelial to mesenchymal transition (EMT) in cervical cancer. Ectopic expression of APE1 promoted EMT and invasion of cervical cancer cells, whereas inhibition of APE1 suppressed EMT and invasion of cervical cancer cells in a redox function-dependent manner. Notably, APE1 redox function inhibitor APX3330 treatment dramatically suppressed cervical cancer cell lymph node and distant metastasis in vivo. Furthermore, we found that APE1 enhanced the interaction between ZEB1 and the E-cadherin promoter by binding to ZEB1, thereby suppressing the expression of E-cadherin, a negative regulator of EMT. CONCLUSION: Our findings help to elucidate the role played by APE1 in cervical cancer metastasis and targeting APE1 redox function may be a novel strategy for inhibiting cervical cancer metastasis.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias do Colo do Útero/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Antígenos CD/genética , Caderinas/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/biossíntese , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Transição Epitelial-Mesenquimal , Feminino , Células HeLa , Xenoenxertos , Humanos , Metástase Linfática , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Oxirredução , Transfecção , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
11.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669030

RESUMO

Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants' defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors' level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Oxirredutases do Álcool/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Lignina/metabolismo , Peroxidase/metabolismo , Dormência de Plantas/genética , Proteínas de Plantas/genética , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/metabolismo , Tubérculos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteína O-Metiltransferase/metabolismo , Proteômica , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Superóxido Dismutase-1/metabolismo
12.
Int J Biol Sci ; 16(16): 3200-3209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162825

RESUMO

Malignant glioma is the most common brain tumor in adults. Despite the great advances in anti-glioma treatments which have led to significant improvement in clinical outcomes, tumor recurrence remains the major cause of mortality. Increased cancer cell stemness and invasiveness are correlated with glioma progression. By searching the Cancer Genome Atlas, we showed that the expression of miR-7156-3p is significantly decreased in glioma tissues compared to the normal brain, and the decreased level of miR-7156-3p is closely correlated with glioma grade and patient survival. Clinical study consistently confirmed that miR-7156-3p is negatively correlated with glioma grade. Cell culture and animal experiments revealed that inhibition of miR-7156-3p effectively stimulates glioma cell stemness, invasion, and growth. In contrast, the augmentation of miR-7156-3p inhibits these phenotypes. Using Next-generation sequencing combined with target prediction approach, Homeobox D13 (HOXD13) is identified as the target gene of miR-7156-3p and further validated by luciferase reporter assay and cell transfection experiments. Additional in vitro and animal experiments demonstrated that miR-7156-3p regulates glioma cell stemness, invasion, and growth by mediating HOXD13. In conclusion, our findings provide new insight into the regulation of glioma stemness and invasiveness and may propose a potential strategy for anti-glioma treatment. Moreover, miR-7156-3p may serve as a candidate biomarker for predicting glioma progression in clinical practice.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Idoso , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas , Adulto Jovem
13.
Food Chem ; 325: 126875, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32387993

RESUMO

Brassinosteroids (BRs), a new class of steroid hormones, are involved in the regulation of plant cell elongation and seed germination. Nevertheless, the molecular mechanism of the effect of BRs on tuber sprouting remains largely unknown. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in sprouting induced by BRs. Our results showed that BRs accelerated the conversion of starch into soluble sugar in tubers. A functional enrichment cluster analysis suggested that the "amino acid metabolism pathway" was upregulated and that "plant hormone signal transduction and protein export" were downregulated. BR treatment also changed the phosphorylation of proteins involved in the BR, ABA, starch and sugar signal transduction pathways, such as serine/threonine-protein kinase (BSK), 14-3-3, alpha-glucan water dikinase (GWD), sucrose-phosphate synthase (SPS), sucrose synthase (SS) and alkaline/neutral invertase (A/N-INV). These results shed more light on the pattern of protein phosphorylation in BR promoting potato sprouting.

14.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31868203

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal and chronic disease with a high rate of infection and mortality; however, its etiology and pathogenesis remain unclear. Studies have revealed that epithelial-mesenchymal transition (EMT) is a crucial cellular event in IPF. Here, we identified that the pulmonary fibrosis inducer bleomycin simultaneously increased the expression of bFGF and TGF-ß1 and inhibited epithelial-specific regulatory protein (ESRP1) expression in vivo and in vitro. In addition, in vitro experiments showed that bFGF and TGF-ß1 down-regulated the expression of ESRP1 and that silencing ESRP1 promoted EMT in A549 cells. Notably, we determined that bFGF activates PI3K/Akt signaling, and treatment with the PI3K/Akt inhibitor LY294002 inhibited bleomycin-induced cell morphology changes and EMT. In addition, the effects of LY294002 on bleomycin-induced EMT were inhibited by ESRP1 silencing in A549 cells. Taken together, these findings suggest that bleomycin induced EMT through down-regulating ESRP1 by simultaneously increasing bFGF and TGF-ß1 in pulmonary fibrosis. Additionally, our findings indicated that bFGF inhibits ESRP1 by activating PI3K/Akt signaling.


Assuntos
Bleomicina , Transição Epitelial-Mesenquimal , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/enzimologia , Pulmão/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Animais , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
15.
Neurochem Res ; 43(3): 669-680, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29427280

RESUMO

Altered proteostasis induced by amyloid peptide aggregation and hyperphosphorylation of tau protein, is a prominent feature of Alzheimer's disease, which highlights the occurrence of endoplasmic reticulum stress and triggers the activation of the unfolded protein response (UPR), a signaling pathway that enforces adaptive programs to sustain proteostasis. In this study, we investigated the role of geniposide in the activation of UPR induced by high glucose in primary cortical neurons. We found that high glucose induced a significant activation of UPR, and geniposide enhanced the effect of high glucose on the phosphorylation of IRE1α, the most conserved UPR signaling branch. We observed that geniposide induced the expression of HRD1, an ubiquitin-ligase E3 in a time dependent manner, and amplified the expression of HRD1 induced by high glucose in primary cortical neurons. Suppression of IRE1α activity with STF-083010, an inhibitor of IRE1 phosphorylation, prevented the roles of geniposide on the expression of HRD1 and APP degradation in high glucose-treated cortical neurons. In addition, the results from RNA interfere on HRD1 revealed that HRD1 was involved in geniposide regulating APP degradation in cortical neurons. These data suggest that geniposide might be benefit to re-establish proteostasis by enhancing the UPR to decrease the load of APP in neurons challenged by high glucose.


Assuntos
Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Iridoides/farmacologia , Neurônios/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
Int J Mol Sci ; 18(11)2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084178

RESUMO

Sprouting regulation in potato tubers is important for improving commercial value and producing new plants. Camphor shows flexible inhibition of tuber sprouting and prolongs the storage period of potato, but its underlying mechanism remains unknown. The results of the present study suggest that camphor inhibition caused bud growth deformities and necrosis, but after moving to more ventilated conditions, new sprouts grew from the bud eye of the tuber. Subsequently, the sucrose and fructose contents as well as polyphenol oxidase (PPO) activity were assessed after camphor inhibition. Transcription and proteomics data from dormancy (D), sprouting (S), camphor inhibition (C), and recovery sprouting (R) samples showed changes in the expression levels of approximately 4000 transcripts, and 700 proteins showed different abundances. KEGG (Kyoto encyclopaedia of genes and genomes) pathway analysis of the transcription levels indicated that phytohormone synthesis and signal transduction play important roles in tuber sprouting. Camphor inhibited these processes, particularly for gibberellic acid, brassinosteroids, and ethylene, leading to dysregulation of physiological processes such as cutin, suberine and wax biosynthesis, fatty acid elongation, phenylpropanoid biosynthesis, and starch and sucrose metabolism, resulting in bud necrosis and prolonged storage periods. The KEGG pathway correlation between transcripts and proteins revealed that terpenoid backbone biosynthesis and plant-pathogen interaction pathways showed significant differences in D vs. S samples, but 13 pathways were remarkably different in the D vs. C groups, as camphor inhibition significantly increased both the transcription levels and protein abundance of pathogenesis-related protein PR-10a (or STH-2), the pathogenesis-related P2-like precursor protein, and the kirola-like protein as compared to sprouting. In recovery sprouting, these genes and proteins were decreased at both the transcriptional level and in protein abundance. It was important to find that the inhibitory effect of camphor on potato tuber sprout was reversible, revealing the action mechanism was similar to resistance to pathogen infection. The present study provides a theoretical basis for the application of camphor in prolonging seed potato storage.


Assuntos
Cânfora/farmacologia , Perfilação da Expressão Gênica , Tubérculos/efeitos dos fármacos , Tubérculos/fisiologia , Proteômica , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/fisiologia , Biologia Computacional/métodos , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes , Fenótipo , Proteoma , Proteômica/métodos , Transdução de Sinais , Solanum tuberosum/citologia , Sacarose/metabolismo , Transcriptoma
17.
Chin Med ; 12: 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469699

RESUMO

BACKGROUND: Herbal quality is strongly influenced by harvest time. It is therefore one of crucial factors that should be well respected by herbal producers when optimizing cultivation techniques, so that to obtain herbal products of high quality. In this work, we paid attention on one of common used Chinese herbals, Cyathula officinalis Kuan. According to previous studies, its quality may be related with growth years because of the variation of several main bioactive components in different growth years. However, information about the whole chemical composition is still scarce, which may jointly determine the herbal quality. METHODS: Cyathula officinalis samples were collected in 1-4 growth years after sowing. To obtain a global insight on chemical profile of herbs, we applied a metabolomics approach based on gas chromatography-mass spectrum. Analysis of variance, principal component analysis, partial least squares discriminant analysis and hierarchical cluster analysis were combined to explore the significant difference in different growth years. RESULTS: 166 metabolites were identified by using gas chromatography-mass spectrum method. 63 metabolites showed significant change in different growth years in terms of analysis of variance. Those metabolites then were grouped into 4 classes by hierarchical cluster analysis, characterizing the samples of different growth ages. Samples harvested in the earliest years (1-2) were obviously differ with the latest years (3-4) as reported by principal component analysis. Further, partial least squares discriminant analysis revealed the detail difference in each growth year. Gluconic acid, xylitol, glutaric acid, pipecolinic acid, ribonic acid, mannose, oxalic acid, digalacturonic acid, lactic acid, 2-deoxyerythritol, acetol, 3-hydroxybutyric acid, citramalic acid, N-carbamylglutamate, and cellobiose are the main 15 discrimination metabolites between different growth years. CONCLUSION: Harvest time should be well considered when producing C. officinalis. In order to boost the consistency of herbal quality, C. officinalis is recommended to harvest in 4th growth year. The method of GC-MS combined with multivariate analysis was a powerful tool to evaluate the herbal quality.

18.
DNA Cell Biol ; 35(12): 802-811, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27710025

RESUMO

Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgCΔ1-160, showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgCΔ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgCΔ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.


Assuntos
Proteínas de Cloroplastos/genética , Cloroplastos/genética , Dendrobium/genética , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sinais Direcionadores de Proteínas/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Clonagem Molecular , Sequência Conservada , Dendrobium/classificação , Dendrobium/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Teste de Complementação Genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Domínios Proteicos , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência , Estreptomicina/farmacologia
19.
Zhongguo Zhong Yao Za Zhi ; 41(14): 2612-2618, 2016 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-28905595

RESUMO

According to ObgC gene sequences from Cyathula officinalis genomic data, the specific primers were designed, and a full-length CoObgC cDNA (2 226 bp) was obtained by polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) methord. Sequence alignment showed that CoObgC gene contained a 1 818 bp open reading frame (ORF) encoding 605 amino acids. Sequence analysis predicted that molecular weight of CoObgC protein was about 66.39 kDa, the academic isoelectric point was 5.35, and the protein was stable protein. Then multiple sequence alignment was applied to construct phylogenetic tree. The real-time fluorescence quantification PCR (RT-qPCR) demonstrated that a high expression level in leaf, followed by root and flower, the low transcription was in stem. The recombinant vector pCABIA2300-CoObgC was constructed and introduced into tobacco epidermal cells by agrobacterium-mediated transformation, green fluorescence was tested and targeted to chloroplast under a laser scanning confocal microscope. These findings will be helpful to lay a foundation for studying the structure and function of CoObgC gene, and elucidating C. officinalis molecular biology experiment.


Assuntos
Amaranthaceae/genética , Cloroplastos/genética , Genes de Plantas , Filogenia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar , Alinhamento de Sequência
20.
Zhongguo Zhong Yao Za Zhi ; 40(4): 629-33, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26137681

RESUMO

In order to explore the dormancy physiological and biochemical mechanism of Paris seeds, the seed embryo growth courses, and the dynamic change of 5 enzymes, include SOD, POD, CAT, MDH, G-6-PDH were measured during variable temperature stratification. The results indicated that Paris seeds embryo grew quickly after 40 d in warm-stratification (18 ± 1) °C, at the meantime the metabolic activity was significantly strengthened. These facts showed that Paris seeds turned into physiological after-ripening process. After 60-80 d, the morphological embryo after-ripping process basically completed, and the following cold-stratification (4 ± 1) °C furthered Paris seed to finish physiological after-ripening. After 40 d, the activity of MDH decreased while G-6-PDH increased significantly. This showed that the main respiratory pathway of seed changed from TCA to PPP, which benifited breaking seed dormancy. In the whole period of stratification process, the activity variation of SOD and CAT was insignificantly and the activity of POD was enhanced significantly after shifting the seed in cold stratification process. This showed that SOD, CAT had no direct effects on breaking Paris seed dormancy but keeping the seed vigor, while the POD might involve in the process of Paris seed dormancy breaking.


Assuntos
Liliaceae/embriologia , Sementes/crescimento & desenvolvimento , Germinação , Liliaceae/química , Liliaceae/enzimologia , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/enzimologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA