Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 1): 127614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884231

RESUMO

An emerging research focus is the role of m6A modifications in mediating the post-transcriptional regulation of mRNA during mammalian development. Recent evidence suggests that m6A methyltransferases and demethylases play critical roles in skeletal muscle development. Ythdf2 is a m6A "reader" protein that mediates mRNA degradation in an m6A-dependent manner. However, the specific function of Ythdf2 in skeletal muscle development and the underlying mechanisms remain unclear. Here, we observed that Ythdf2 expression was significantly upregulated during myogenic differentiation, whereas Ythdf2 knockdown markedly inhibited myoblast proliferation and differentiation. Combined analysis of high-throughput sequencing, Co-IP, and RIP assay revealed that Ythdf2 could bind to m6A sites in STK11 mRNA and form an Ago2 silencing complex to promote its degradation, thereby regulating its expression and consequently, the AMPK/mTOR pathway. Furthermore, STK11 downregulation partially rescued Ythdf2 knockdown-induced impairment of proliferation and myogenic differentiation by inhibiting the AMPK/mTOR pathway. Collectively, our results indicate that Ythdf2 mediates the decay of STK11 mRNA, an AMPK activator, in an Ago2 system-dependent manner, thereby driving skeletal myogenesis by suppressing the AMPK/mTOR pathway. These findings further enhance our understanding of the molecular mechanisms underlying RNA methylation in the regulation of myogenesis and provide valuable insights for conducting in-depth studies on myogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Serina-Treonina Quinases TOR , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA , Desenvolvimento Muscular/genética , Mamíferos/genética
2.
Biology (Basel) ; 12(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37626981

RESUMO

Oxidative damage to skin fibroblast cells is a causative factor in many skin diseases. Previous studies have reported that lysine-specific demethylase 4D (Kdm4d) is involved in DNA replication, but its role on antioxidant capacity remains unclear. In the present study, we used goat fibroblast cells (GFCs) as the research model and identified 504 up-regulated and 1013 down-regulated genes following the knockdown of Kdm4d, respectively. The down-regulated genes of this enzyme were found to be enriched in the cell cycle, DNA replication, mitotic processes, and the oxidative phosphorylation pathway, as previously revealed from gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and gene set enrichment analysis (GSEA), suggesting vital roles of the Kdm4d enzyme in the cell cycle and in antioxidant regulation. To this end, we found the cell proliferation rate was significantly decreased after the knockdown of Kdm4d. Moreover, both the mRNA and protein expression levels of superoxide dismutase 2 (SOD2), one of the major antioxidant enzymes, was decreased, while the reactive oxygen species (ROS) level was significantly increased in Kdm4d knocked-down cells. In addition, the expression of γH2A histone family member X (γH2AX) increased significantly, indicating the presence of DNA double-strand breaks after the knockdown of the Kdm4d enzyme. In conclusion, the knockdown of Kdm4d inhibited DNA replication and the cell cycle, repressed the expression of SOD2, and increased the generation of ROS, which led to the production of DNA damage in GFCs. Our data will be helpful for understanding the mechanism underlying antioxidant capacity regulation in fibroblast cells.

3.
Anim Reprod Sci ; 255: 107281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352705

RESUMO

MicroRNAs (miRNAs), as post-transcriptional gene mediators, regulate the biological characteristics of spermatogonial stem cells (SSCs), including proliferation, differentiation and apoptosis. However, the potential roles and mechanisms by which miR-101-5p affected the biological characters of goat SSCs have not been fully elucidated. Herein, we reported that miR-101-5p overexpression decreased cell viability (P < 0.01), arrested cell cycle in the G1 phase (P < 0.05), and aggravated apoptosis of goat SSCs (P < 0.01) compared with negative control (NC), as determined by CCK-8 assay and flow cytometry analysis. Additionally, PCNA protein expression was attenuated by miR-101-5p overexpression (P < 0.05). Notably, the expression of SSCs specific genes Oct4 (P < 0.05), PLZF (P < 0.01) and DAZL (P < 0.01) were decreased in miR-101-5p overexpressed SSCs. Furthermore, the dual luciferase reporter assay showed that, when co-transfected with miR-101-5p mimics, the relative luciferase activity of EZH2 wide-type (WT) was inhibited (P < 0.05) compared with the transfection of EZH2 mutant (MUT). EZH2 expression was negatively correlated with miR-101-5p expression in goat SSCs. Collectively, our data implicates that miR-101-5p overexpression aggravates cell apoptosis, and suppresses cell proliferation of goat SSCs via targeting EZH2, which may impair spermatogenesis.


Assuntos
Cabras , MicroRNAs , Masculino , Animais , Cabras/genética , Cabras/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Células-Tronco , Luciferases , Apoptose/genética , Linhagem Celular Tumoral
4.
Curr Issues Mol Biol ; 45(4): 3219-3237, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37185734

RESUMO

KDM5B is essential for early embryo development, which is under the control of maternal factors in oocytes. Granulosa cells (GCs) play a critical role during oocyte mature. However, the role of KDM5B in GCs remains to be elucidated. In the current study, we found that KDM5B expressed highly in the ovaries and located in goat GCs. Using an RNA sequence, we identified 1353 differentially expressed genes in the KDM5B knockdown GCs, which were mainly enriched in cell cycle, cell division, DNA replication and the cellular oxidative phosphorylation regulation pathway. Moreover, we reported a decrease in the percentage of proliferated cells but an increase in the percentage of apoptotic cells in the KDM5B knockdown GCs. In addition, in the KDM5B knockdown GCs, the percentage of GCs blocked at the S phase was increased compared to the NC group, suggesting a critical role of KDM5B in the cell cycle. Moreover, in the KDM5B knockdown GCs, the reactive oxygen species level, the mitochondrial depolarization ratio, and the expression of intracellular phosphorylated histone H2AX (γH2AX) increased, suggesting that knockdown of KDM5B leads to DNA damage, primarily in the form of DNA double-strand breaks (DSBs). Interestingly, we found a down-regulation of MTF1 in the KDM5B knockdown GCs, and the level of cell proliferation, as well as the cell cycle block in the S phase, was improved. In contrast, in the group with both KDM5B knockdown and MTF1 overexpression, the level of ROS, the expression of γH2AX and the number of DNA DSB sites decreased. Taken together, our results suggest that KDM5B inhibits DNA damage and promotes the cell cycle in GCs, which might occur through the up-regulation of MTF1.

5.
J Mol Endocrinol ; 70(4)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883561

RESUMO

The serine-threonine protein phosphatase 2A (PP2A) is a heterotrimeric enzyme complex that plays a vital role in regulating male reproductive activities. However, as an essential member of the PP2A family, the physiological functions of PP2A regulatory subunit B55α (PPP2R2A) in testis remain inconclusive. Hu sheep are noted for their reproductive precocity and fertility, and are ideal models for the study of male reproductive physiology. Here, we analyzed the expression patterns of PPP2R2A in the male Hu sheep reproductive tract at different developmental stages and further investigated its role in testosterone secretion and its underlying mechanisms. In this study, we found that there were temporal and spatial differences in PPP2R2A protein expression in the testis and epididymis, especially the expression abundance in the testis at 8 months old (8M) was higher than that at 3 months old (3M). Interestingly, we observed that PPP2R2A interference reduced the testosterone levels in the cell culture medium, which is accompanied by a reduction in Leydig cell proliferation and an elevation in Leydig cell apoptosis. The level of reactive oxygen species in cells increased significantly, while the mitochondrial membrane potential (ΔΨm) decreased significantly after PPP2R2A deletion. Meanwhile, the mitochondrial mitotic protein DNM1L was significantly upregulated, while the mitochondrial fusion proteins MFN1/2 and OPA1 were significantly downregulated after PPP2R2A interference. Furthermore, PPP2R2A interference suppressed the AKT/mTOR signaling pathway. Taken together, our data indicated that PPP2R2A enhanced testosterone secretion, promoted cell proliferation, and inhibited cell apoptosis in vitro, all of which were associated with the AKT/mTOR signaling pathway.


Assuntos
Células Intersticiais do Testículo , Proteínas Proto-Oncogênicas c-akt , Masculino , Animais , Ovinos , Células Intersticiais do Testículo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Testosterona/metabolismo
6.
Genomics ; 114(5): 110453, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36030023

RESUMO

DNA methylation has crucial roles in regulating the expression of genes involved in skeletal muscle development. However, the DNA methylation pattern of lncRNA during sheep skeletal muscle development remains unclear. This study investigated previous WGBS and LncRNA data in skeletal muscle of sheep (fetus and adult). We then focused on LncRNA GTL2, which is differentially expressed in skeletal muscle and has multiple DMRs. We found that the expression level of GTL2 decreased with age. GTL2 DMRs methylation levels were significantly higher in adult muscle than in fetal muscle. After 5AZA treatment, GTL2 expression was significantly increased in a dose-dependent manner.The dCas9-DNMT3A-sgRNA significantly reduced the expression level of GTL2 in cells, but increased GTL2 DMR methylation levels. The above studies indicate that dCas9-DNMT3A can effectively increase the methylation level in the DMR region of GTL2, the expression level of GTL2 is regulated by DNA methylation during muscle development.


Assuntos
Metilação de DNA , RNA Longo não Codificante , Animais , Impressão Genômica , Desenvolvimento Muscular/genética , Músculo Esquelético , RNA Longo não Codificante/genética , Ovinos/genética
7.
Cell Biosci ; 12(1): 25, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255956

RESUMO

BACKGROUND: Extracellular-signal-regulated kinase (ERK) direct cell fate determination during the early development. The intricate interaction between the deposition of H3K9me2, de novo 5mC, and its oxides affects the remodeling of zygotic epigenetic modification. However, the role of fertilization-dependent ERK in the first cell cycle during zygotic reprogramming remains elusive. METHODS: In the present study, we used the small molecule inhibitor to construct the rapid ERK1/2 inactivation system in early zygotes in mice. The pronuclear H3K9me2 deposition assay and the pre-implantation embryonic development ability were assessed to investigate the effect of fertilization-dependent ERK1/2 on zygotic reprogramming and developmental potential. Immunofluorescence and RT-PCR were performed to measure the 5mC or its oxides and H3K9me2 deposition, and the expression of related genes. RESULTS: We reported that zygotic ERK1/2 inhibition impaired the development competence of pre-implantation embryos. Following the ERK1/2 inhibition, H3K9me2, as well as 5mC and its oxides, were all accumulated abnormally, and the excess accumulation of paternal H3K9me2 and 5mC resulted in reduced asymmetry between parental pronuclei. Furthermore, ERK1/2 inhibition triggered paternal pronuclear localization of the H3K9 methyltransferase G9a and Tet methylcytosine dioxygenase 3 (Tet3). Moreover, the excess localization of G9a antagonized the tight binding of Tet3 to paternal chromatin when ERK1/2 was inhibited. CONCLUSIONS: In conclusion, we propose that zygotic H3K9me2 and 5mC are regulated by fertilization-dependent ERK1/2, which contributes to the development competence of pre-implantation embryos in mice.

8.
Cell Biosci ; 12(1): 12, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109938

RESUMO

BACKGROUND: In mammals, maternal gene products decay and zygotic genome activation (ZGA) during maternal to zygotic transition (MZT) is critical for the early embryogenesis. Y-box binding protein YBX1 plays vital roles in RNA stabilization and transcriptional regulation, but its roles remain to be elucidated during pre-implantation development. METHODS: In the present study, we re-analyzed transcriptional level of YBX1 in mice, human, bovine, and goat embryos using public RNA-seq datasets. We further performed siRNA microinjection to knock down the expression of YBX1, and RNA sequencing of the 8-cell stage embryos in the control and YBX1 knockdown group. To reveal the regulation mechanisms of YBX1, we conducted differentially expression analysis, alternative splicing (AS) analysis, enrichment analysis, and 5-EU staining using DESeq2, rMATs, clusterProfiler, and immunofluorescence technique, respectively. RESULTS: The expression of YBX1 was increased during MZT in goat, bovine, human, and mice, but significantly decreased in YBX1 knockdown embryos compared with the controls, suggesting successfully knockdown of YBX1. The percentage of blastocyst was decreased, while embryos blocked at the 2- and 4-cell stage were increased in YBX1 knockdown embryos compared to the controls. Using RNA-seq, we identified 1623 up-regulated and 3531 down-regulated genes in the 8-cell stage YBX1 knockdown embryos. Of note, the down-regulated genes were enriched in regulation of RNA/mRNA stability and spliceosome, suggesting that YBX1 might medicate RNA stability and AS. To this end, we identified 3284 differential AS events and 1322 differentially expressed maternal mRNAs at the 8-cell stage YBX1 knockdown embryos. Meanwhile, the splicing factors and mRNA decay-related genes showed aberrant expression, and the transcriptional activity during ZGA in goat and mice was compromised when YBX1 was knocked down. CONCLUSION: YBX1 serves an important role in maternal mRNA decay, alternative splicing, and the transcriptional activity required for early embryogenesis, which will broaden the current understanding of YBX1 functions during the stochastic reprogramming events.

9.
Biology (Basel) ; 11(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35205154

RESUMO

Male germ cells directly affect the reproduction of males; however, their accurate isolation and culture in vitro is extremely challenging, hindering the study of germ cell development and function. CRISPR/dcas9, as an efficient gene reprogramming system, has been verified to promote the transdifferentiation of pluripotent stem cells into male germ cells by editing target genes. In our research, we explored the expression pattern of the germ cell related genes bmp4, dazl,nanos3 and sycp2 in Hu sheep testicular development and constructed the overexpression model using the CRISPR/dcas9 system. The results indicated that four genes showed more expression in testis tissue than in other tissues, and that bmp4, dazl and sycp2 present higher expression levels in nine-month-old sheep testes than in three-month-olds, while nanos3 expressed the opposite trend (p < 0.05). In addition, the expression of four potential genes in spermatogenic cells was slightly different, but they were all expressed in sheep Leydig cells. To verify the potential roles of the four genes in the process of inducing differentiation of male germ cells, we performed cell transfection in vitro. We found that the expression of the germ cell related genes Prdm1, Prdm14, Mvh and Sox17 were significantly increased after the overexpression of the four genes in Leydig cells, and the co-transfection effect was the most significant (p < 0.05). Our results illustrate the crucial functions of bmp4, dazl, nanos3 and sycp2 in Hu sheep testis development and verified the effectiveness of the overexpression model that was constructed using the CRISPR/dcas9 system, which provided a basis for further male germ cell differentiation in vitro.

10.
FASEB J ; 36(1): e22097, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935184

RESUMO

Circular RNAs (circRNAs) are an indispensable element of post-transcriptional gene regulation, influencing a variety of biological processes including myogenic differentiation; however, little is known about the function of circRNA in goat myogenic differentiation. Using RNA-sequencing data from our laboratory, we explored the influences of circUSP13, as a candidate circRNA, on myoblast differentiation since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). In in vitro experiments, circUSP13 significantly promoted differentiation and inhibited apoptosis in goat primary myoblasts. Mechanistically, circUSP13 localized with miR-29c in the cytoplasm of goat myoblasts to regulate IGF1 expression. We further demonstrated that circUSP13 sponges miR-29c, promoting IGF1 expression that upregulated the expression of MyoG and MyHC. Thus, our results identified circUSP13 as a molecular marker for breeding programs of mutton production, as well as the circUSP13-miR-29c-IGF1 axis as a potential therapeutic target for combating muscle wasting.


Assuntos
Apoptose , Diferenciação Celular , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/metabolismo , Mioblastos/metabolismo , RNA Circular/metabolismo , Animais , Cabras
11.
Cell Tissue Res ; 387(1): 131-142, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34725717

RESUMO

RNA N6-methyladenosine (m6A) is essential for many bioprocesses in many species, but its role in goat testis development remains elusive, especially alkB homolog 5 (ALKBH5), one of the m6A demethylases. To this end, nine healthy Haimen goats of different ages were chosen randomly to provide testes. The results showed that the expression level of ALKBH5 was increased significantly (P < 0.05) in the 9-month group compared with the 0-day and 3-month groups, and ALKBH5 was located in goat spermatocytes with the highest expression level compared with Leydig cells and Sertoli cells. Thus, pcDNA3.1-ALKBH5 was constructed to explore the influences of the ALKBH5 increase in goat spermatogonial stem cells (SSC) in vitro. The results showed that the expression level of ALKBH5 in SSC transfected with pcDNA3.1-ALKBH5 (OE_ALKBH5) was significantly increased (P < 0.001) compared with that in SSC transfected with pcDNA3.1-EGFP (EGFP). With ALKBH5 overexpression in SSC, flow cytometry analysis showed that cells at G1 phase were significantly reduced (P < 0.01), while cells at S phase significantly increased (P < 0.01), and cell apoptosis was inhibited. Accordingly, the mRNA degradation of CCND1, CCNE1, and BCL2 was suppressed with ALKBH5 overexpression in SSC after treatment with actinomycin D. Furthermore, the mRNA levels of pluripotency maintenance- and cell differentiation-associated genes were changed between the two groups. Overall, the results indicated the crucial role of ALKBH5 during Haimen goat testis development. The results of this study provide a theoretical basis and technical means for RNA methylation participating in goat testis development.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Enzimas AlkB/metabolismo , Espermatogônias/metabolismo , Testículo/fisiologia , Animais , Diferenciação Celular , Cabras , Humanos , Masculino , Transfecção
12.
Theriogenology ; 177: 140-150, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34700071

RESUMO

It has been reported that N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) plays an important role in zygote genome activation during embryonic development, but the effects of METTL3 under oxidative stress in the early development of goat embryos remain largely unknown. In this study, zygotes were monitored at 72 and 168 h after fertilization, and they developed to the 8-cell stage and blastocyst stage under hypoxic conditions and normoxic conditions. Single-cell transcriptome sequencing was performed at the 8-cell stage and the blastocyst stage in the goat embryos, the differentially expressed METTL3 was screened from the sequencing results. We found that microinjection of small interfering RNA (siRNA) against METTL3 caused developmental arrest, both 8-cell rates (37.45 ± 2.21% vs. 47.09 ± 1.38%; P < 0.01) and blastocyst rates of Si-METTL3 (12.17% ± 2.84 vs. 20.83 ± 3.61%; P < 0.01) in Si-METTL3 group were significantly decreased compared with that of control under hypoxic conditions, significant changes were found in the m6A-related genes and the expression levels of critical transcription factors, such as, NANOG, GATA3, CDX2 and SOX17, were decreased. This study revealed the key role of METTL3 in the regulation of embryonic development under oxidative stress, and laid the foundation for further study of the crucial mechanism of oxidative stress during the early embryonic development of goats.


Assuntos
Cabras , Metiltransferases , Adenosina , Animais , Desenvolvimento Embrionário , Metiltransferases/genética , RNA Mensageiro
13.
Theriogenology ; 176: 149-162, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619436

RESUMO

Embryonic implantation is a complex reproductive physiological process in mammals. Although several endometrial proteins affecting embryonic implantation have been reported in the past, there are still potential endometrial proteins that have been neglected, and their specific regulatory mechanisms are unclear. This study demonstrated that protein phosphatase 2A regulatory subunit B55α (PPP2R2A) served as a novel regulator in medication of sheep embryonic implantation in vitro. Our results showed that sheep PPP2R2A encoded 447 amino acids and shared 91.74%-92.36% amino acid sequences with its orthologs compared with other species. Meanwhile, PPP2R2A was widely expressed in sheep uterine tissues, and it could regulate the expression levels of key regulators of embryonic implantation in endometrial stromal cells (ESCs). Knockdown of PPP2R2A significantly inhibited cell proliferation by blocking cell cycle transfer G0/G1 into S phase accompanied by downregulation of CDK2, CDK4, CCND1, CCNE1 and upregulation of P21. In contrast to PPP2R2A overexpression, PPP2R2A interference greatly promoted cell apoptosis and the expression of BAX, CASP3, CASP9 and BAX/BCL-2. Taken together, these results suggest that PPP2R2A, as a novel regulatory factor, affects embryonic implantation via regulating the proliferation and apoptosis of Hu sheep ESCs in vitro.


Assuntos
Apoptose , Proteína Fosfatase 2 , Ovinos , Animais , Proliferação de Células , Implantação do Embrião , Embrião de Mamíferos , Células Estromais
14.
Mol Ther Nucleic Acids ; 26: 34-48, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34513292

RESUMO

N6-methyladenosine (m6A) modification plays a critical role in mammalian development. However, the role of m6A in the skeletal muscle development remains largely unknown. Here, we report a global m6A modification pattern of goat skeletal muscle at two key development stages and identified that the m6A modification regulated the expression of the growth arrest and DNA damage-inducible 45B (GADD45B) gene, which is involved in myogenic differentiation. We showed that GADD45B expression increased during myoblast differentiation, whereas the downregulation of GADD45B inhibits myogenic differentiation and mitochondrial biogenesis. Moreover, the expression of GADD45B regulates the expression of myogenic regulatory factors and peroxisome proliferator-activated receptor gamma coactivator 1 alpha by activating the p38 mitogen-activated protein kinase (MAPK) pathway. Conversely, the inactivation of p38 MAPK abolished the GADD45B-mediated myogenic differentiation. Furthermore, we found that the knockdown of fat mass and obesity-associated protein (FTO) increases GADD45B m6A modification and decreases the stability of GADD45B mRNA, which impairs myogenic differentiation. Our results indicate that the FTO-mediated m6A modification in GADD45B mRNA drives skeletal muscle differentiation by activating the p38 MAPK pathway, which provides a molecular mechanism for the regulation of myogenesis via RNA methylation.

15.
Biol Reprod ; 105(4): 905-917, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34192747

RESUMO

Developmental arrest of somatic cell nuclear transfer (SCNT) embryos first occurs at zygotic/embryonic genome activation (ZGA/EGA), which is critical for preimplantation development. However, study on transcriptome of SCNT embryos during ZGA/EGA is limited. In the present study, we performed RNA sequencing (RNA-seq) of the eight-cell SCNT embryos in goat and provide cross-species analysis of transcriptional activity of SCNT embryos during ZGA/EGA in mice, human, bovine, and goat. RNA-seq data revealed 3966 differentially expressed genes (DEGs) failed to be reprogrammed or activated during EGA of SCNT embryos in goat. Series test of cluster analysis showed four clusters of DEGs and similar changes of the clusters in the four species. Specifically, genes in cluster 3 were somehow upregulated compared with the donor cells and the in vitro fertilization embryo. Moreover, the histone methylation key players and N6-methyladenosine modifiers (SUV39H1, SETDB1, SETD2, KDM5B, IGF2BP1, and YTHDF2) were differentially expressed in SCNT embryos of all species. Finally, we identified three modules correlated with the development of SCNT embryos in mice and screened 288 genes (such as BTG4, WEE1, KLF3, and USP21) that are likely critical for SCNT reprogramming using weighted gene correlation network analysis. Our data will broaden the current understanding of transcriptome activity during stochastic reprogramming events and provide an excellent source for future studies.


Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Cabras/embriologia , Zigoto/metabolismo , Animais
16.
Biology (Basel) ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924908

RESUMO

It has been reported that hypoxic environments were more suitable for the in vitro development of mammalian embryos, but the underlying mechanisms were still unclear. In the present study, RNA-seq was performed to compare 8-cell-stage and blastocyst-stage goat embryos under hypoxic and normoxic conditions; zygotes were checked at 72 and 168 h to 8-cell stage (L8C) and blastocyst stage (LM) in hypoxic conditions and 8-cell stage (H8C) and blastocyst stage (HM) in normoxic conditions. In the H8C and L8C groups, 399 DEGs were identified, including 348 up- and 51 down-regulated DEGs. In the HM and LM groups, 1710 DEGs were identified, including 1516 up- and 194 down-regulated DEGs. The expression levels of zygotic genes, transcription factors, and maternal genes, such as WEE2, GDF9, HSP70.1, BTG4, and UBE2S showed significant changes. Functional enrichment analysis indicated that these DEGs were mainly related to biological processes and function regulation. In addition, combined with the pathway-gene interaction network and protein-protein interaction network, twenty-two of the hub genes were identified and they are mainly involved in energy metabolism, immune stress response, cell cycle, receptor binding, and signal transduction pathways. The present study provides comprehensive insights into the effects of oxidative stress on early embryo development in goats.

17.
Theriogenology ; 166: 9-20, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667862

RESUMO

This study aimed to investigate the expression pattern of spermatogenesis associated protein 6 (SPATA6) in Hu sheep testis and to ascertain the effects of SPATA6 on sheep Leydig cells (LCs) function linked to spermatogenesis. In the present study, we detected a 1970 bp cDNA fragment of SPATA6 included a 1467 bp coding sequence which encoded 487 amino acids. Meanwhile, sheep SPATA6 shared 51.70%-97.41% amino acid sequences with its orthologs compared with other species. In addition, SPATA6 was highly expressed in testis and localized in cytoplasm and nucleus of LCs as well as spermatogenic cells at different stages. Compared to the negative control (NC), SPATA6 interference promoted apoptosis of LCs with the increase of BAX/BCL-2 mRNA and protein levels, while the results of SPATA6 overexpression were on the contrary. Meanwhile, cell cycle was blocked at G2/M phase and CDK1 and CCNB1 were down-regulated after SPATA6 interference. SPATA6 overexpression induced cell cycle transfer G0/G1 into S and G2/M phase with upregulation of CDK1, CDK4, CCND1 and CCND2. Moreover, the secretion of testosterone hormone and the expression of StAR in LCs with SPATA6 overexpression were significantly promoted. Overall, our data suggest that SPATA6 is an important functional molecule of spermatogenesis, via regulating the proliferation, apoptosis and testosterone biosynthesis of Hu sheep LCs. These findings will enhance the understanding of the roles of SPATA6 in sheep spermatogenesis.


Assuntos
Células Intersticiais do Testículo , Testículo , Animais , Apoptose , Proliferação de Células , Masculino , Ovinos , Espermatogênese , Testosterona
18.
Mol Ther Nucleic Acids ; 24: 54-66, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33738138

RESUMO

Long non-coding RNAs (lncRNAs) are involved in shaping chromosome conformation and regulation of preimplantation development. However, the role of lncRNA during somatic cell nuclear transfer (SCNT) reprogramming remains largely unknown. In the present study, we identified 114 upregulated lncRNAs in the 8-cell SCNT embryos as candidate key molecules involved in nuclear reprogramming in goat. We found that H3K4me3 was an epigenetic barrier in goat nuclear reprogramming that and injection of Kdm5b mRNA greatly improved SCNT embryos development through removal of H3K4me3. We further reported that knockdown of lnc_3712 increased the expression of Kdm5b, which led to H3K4me3 demethylation. Of note, the development of goat SCNT embryos was improved when lnc_3712 was knocked down, whereas the blastocyst rate showed no difference in lnc_3712 and Kdm5b double knockdown SCNT embryos compared with the negative control SCNT embryos. Specifically, in lnc_3712 knockdown SCNT embryos, partial of the transcriptional activity and the expression of critical embryonic genes (Wee1, Ctsb, and Ybx1) were similar with that of in vitro fertilization embryos. Therefore, our results elucidate the critical role of lnc_3712 in regulating the development of goat SCNT embryos via repressing Kdm5b, which advances our current understanding of the role of lncRNAs during nuclear reprogramming.

19.
Reproduction ; 161(5): 523-537, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730690

RESUMO

Long ncRNAs regulate a complex array of fundamental biological processes, while its molecular regulatory mechanism in Leydig cells (LCs) remains unclear. In the present study, we established the lncRNA LOC102176306/miR-1197-3p/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) regulatory network by bioinformatic prediction, and investigated its roles in goat LCs. We found that lncRNA LOC102176306 could efficiently bind to miR-1197-3p and regulate PPARGC1A expression in goat LCs. Downregulation of lncRNA LOC102176306 significantly supressed testosterone (T) synthesis and ATP production, decreased the activities of antioxidant enzymes and mitochondrial complex I and complex III, caused the loss of mitochondrial membrane potential, and inhibited the proliferation of goat LCs by decreasing PPARGC1A expression, while these effects could be restored by miR-1197-3p inhibitor treatment. In addition, miR-1197-3p mimics treatment significantly alleviated the positive effects of lncRNA LOC102176306 overexpression on T and ATP production, antioxidant capacity and proliferation of goat LCs. Taken together, lncRNA LOC102176306 functioned as a sponge for miR-1197-3p to maintain PPARGC1A expression, thereby affecting the steroidogenesis, cell proliferation and oxidative stress of goat LCs. These findings extend our understanding of the molecular mechanisms of T synthesis, cell proliferation and oxidative stress of LCs.


Assuntos
Células Intersticiais do Testículo/citologia , MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Longo não Codificante/genética , Testículo/citologia , Animais , Apoptose , Proliferação de Células , Cabras , Células Intersticiais do Testículo/metabolismo , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Testículo/metabolismo , Testosterona/metabolismo
20.
Theriogenology ; 164: 65-73, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556906

RESUMO

Betaine, a highly valuable feed additive, has been observed to alter the distribution of protein and fat in the bodies of ruminants and to exhibit strong antioxidant properties. However, the effects of dietary betaine supplementation on the biochemical parameters of blood and on testicular oxidative stress remain unknown. This study aimed to investigate the effects of dietary betaine supplementation on lipid metabolism, immunity, and testicular oxidative status in Hu sheep. Experimental sheep (n=3, three sheep per group) were fed betaine-containing diets, a basal diet supplemented with 0 g/day (control group), 1 g/day (B1), and 3 g/day betaine (B2). There were no differences in the serum concentrations of triglycerides and cholesterol in Hu sheep receiving diets supplemented with betaine. The ratio of basophils significantly increased in the B1 and B2 groups. ELISA (enzyme-linked immunosorbent assay) results showed that testicular superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity were significantly higher, whereas malondialdehyde (MDA) content significantly decreased, after feeding betaine-supplemented diets. qPCR results showed that the mRNA expression levels of CAT, SOD2, and GSH-Px were significantly upregulated in both the B1 and B2 groups compared to those in the control group. Furthermore, the expression of proliferating cell nuclear antigen (PCNA) was significantly lower in the testes of betaine-treated Hu sheep than in the control group. Moreover, LKB1 (liver kinase B1) expression significantly increased, and mRNA expression of AMPK (AMP-activated serine/threonine protein kinase) significantly decreased in the B1 group. The relative gene expression of mTOR (mechanistic target of rapamycin) was significantly higher in the B2 group than in the control group. RAPTOR expression significantly increased in the B1 group. Western blot revealed that the ratio of P-mTOR and mTOR significantly increased after feeding betaine-supplemented diets. In conclusion, betaine supplementation improved serum lipid metabolism, immune response, and increased the testicular antioxidant capacity of Hu sheep, which might be regulated via mTOR signaling pathway.


Assuntos
Betaína , Testículo , Ração Animal/análise , Animais , Antioxidantes , Betaína/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Masculino , Estresse Oxidativo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA