Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 31(1): 157-172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37370257

RESUMO

Apoptosis is an important process for organism development that functions to eliminate cell damage, maintain homeostasis, and remove obsolete tissues during morphogenesis. In mammals, apoptosis is accompanied by the release of cytochrome C (Cyt-c) from mitochondria to the cytoplasm. However, whether this process is conserved in the fruit fly, Drosophila melanogaster, remains controversial. In this study, we discovered that during the degradation of Drosophila salivary gland, the transcription of mitochondria apoptosis factors (MAPFs), Cyt-c, and death-associated APAF1-related killer (Dark) encoding genes are all upregulated antecedent to initiator and effector caspases encoding genes. The proteins Cyt-c and the active caspase 3 appear gradually in the cytoplasm during salivary gland degradation. Meanwhile, the Cyt-c protein colocates with mito-GFP, the marker indicating cytoplasmic mitochondria, and the change in mitochondrial membrane potential coincides with the appearance of Cyt-c in the cytoplasm. Moreover, impeding or promoting 20E-induced transcription factor E93 suppresses or enhances the staining of Cyt-c and the active caspase 3 in the cytoplasm of salivary gland, and accordingly decreases or increases the mitochondrial membrane potential, respectively. Our research provides evidence that cytoplasmic Cyt-c appears before apoptosis during Drosophila salivary gland degradation, shedding light on partial conserved mechanism in apoptosis between insects and mammals.


Assuntos
Citocromos c , Drosophila , Animais , Drosophila/genética , Citocromos c/genética , Citocromos c/metabolismo , Caspase 3 , Drosophila melanogaster/genética , Caspases/genética , Apoptose , Citoplasma/metabolismo , Glândulas Salivares/metabolismo , Mamíferos/metabolismo
2.
Chem Sci ; 12(33): 11038-11044, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34522301

RESUMO

We report a full account of our research on nickel-catalyzed Markovnikov-selective hydroarylation and hydroalkenylation of non-conjugated alkenes, which has yielded a toolkit of methods that proceed under mild conditions with alkenyl sulfonamide, ketone, and amide substrates. Regioselectivity is controlled through catalyst coordination to the native Lewis basic functional groups contained within these substrates. To maximize product yield, reaction conditions were fine-tuned for each substrate class, reflecting the different coordination properties of the directing functionality. Detailed kinetic and computational studies shed light on the mechanism of this family of transformations, pointing to transmetalation as the turnover-limiting step.

3.
Angew Chem Int Ed Engl ; 59(51): 23306-23312, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32894810

RESUMO

A nickel-catalyzed regiodivergent hydroarylation and hydroalkenylation of unactivated alkenyl carboxylic acids is reported, whereby the ligand environment around the metal center dictates the regiochemical outcome. Markovnikov hydrofunctionalization products are obtained under mild ligand-free conditions, with up to 99 % yield and >20:1 selectivity. Alternatively, anti-Markovnikov products can be accessed with a novel 4,4-disubstituted Pyrox ligand in excellent yield and >20:1 selectivity. Both electronic and steric effects on the ligand contribute to the high yield and selectivity. Mechanistic studies suggest a change in the turnover-limiting and selectivity-determining step induced by the optimal ligand. DFT calculations reveal that in the anti-Markovnikov pathway, repulsion between the ligand and the alkyl group is minimized (by virtue of it being 1° versus 2°) in the rate- and regioselectivity-determining transmetalation transition state.


Assuntos
Alcenos/química , Ácidos Carboxílicos/química , Hidrocarbonetos/síntese química , Níquel/química , Catálise , Teoria da Densidade Funcional , Hidrocarbonetos/química , Ligantes , Estrutura Molecular , Estereoisomerismo
4.
Angew Chem Int Ed Engl ; 59(23): 8885-8890, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32196876

RESUMO

Metal-coordinating directing groups have seen extensive use in the field of transition-metal-catalyzed alkene functionalization; however, their waste-generating installation and removal steps limit the efficiency and practicality of reactions that rely on their use. Inspired by developments in asymmetric organocatalysis, where reactions rely on reversible covalent interactions between an organic substrate and a chiral mediator, we have developed a transient-directing-group approach to reductive Heck hydroarylation of alkenyl benzaldehyde substrates that proceeds under mild conditions. Highly stereoselective migratory insertion is facilitated by in situ formation of an imine from catalytic amounts of a commercially available amino acid additive. Computational studies reveal an unusual mode of enantioinduction by the remote chiral center in the transient directing group.


Assuntos
Alcenos/química , Benzaldeídos/química , Catálise , Estereoisomerismo , Temperatura , Elementos de Transição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA