Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Bioorg Med Chem Lett ; 92: 129409, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453616

RESUMO

Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways. Inhibitors of PDE5 are important therapeutics for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). We previously reported the first generation of quinoline-based PDE5 inhibitors for the treatment of AD. However, the short in vitro microsomal stability rendered them unsuitable drug candidates. Here we report a series of new quinoline-based PDE5 inhibitors. Among them, compound 4b, 8-cyclopropyl-3-(hydroxymethyl)-4-(((6-methoxypyridin-3-yl)methyl)amino)quinoline-6-carbonitrile, shows a PDE5 IC50 of 20 nM and improved in vitro microsomal stability (t1/2 = 44.6 min) as well as excellent efficacy in restoring long-term potentiation, a type of synaptic plasticity to underlie memory formation, in electrophysiology experiments with a mouse model of AD. These results provide an insight into the development of a new class of PDE5 inhibitors for the treatment of AD.


Assuntos
Doença de Alzheimer , Quinolinas , Camundongos , Animais , Inibidores da Fosfodiesterase 5/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Plasticidade Neuronal , Doença de Alzheimer/tratamento farmacológico , Quinolinas/farmacologia , Quinolinas/uso terapêutico
3.
iScience ; 23(12): 101884, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33354662

RESUMO

We previously identified the N-quinoline-benzenesulfonamide (NQBS) scaffold as a potent inhibitor of nuclear factor-κB (NF-κB) translocation. Now, we report the structure-activity relationship of compounds with the NQBS scaffold in models of diffuse large B-cell lymphoma (DLBCL). We identified CU-O42, CU-O47, and CU-O75 as NQBS analogs with the most potent cytotoxic activity in DLBCL lines. Their anti-lymphoma effect was mediated by NF-κB sequestration to the cytoplasm of DLBCL cells. Internal Coordinates Mechanics analysis suggested direct binding between CU-O75 and IκBα/p50/p65 which leads to the stabilization of the NF-κB trimer. A whole cellular thermal shift assay confirmed direct binding of the NQBS to IκBα, an inhibitory component of the IκBα/p50/p65 trimer. Lymphoma cell line sequencing revealed CU-O75 induced downregulation of NF-κB-dependent genes and DeMAND analysis identified IκBα as one of the top protein targets for CU-O75. CU-O42 was potent in inhibiting tumor growth in two mouse models of aggressive lymphomas.

4.
Neuropsychopharmacology ; 45(9): 1545-1556, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417852

RESUMO

Enhancing stress resilience in at-risk populations could significantly reduce the incidence of stress-related psychiatric disorders. We have previously reported that the administration of (R,S)-ketamine prevents stress-induced depressive-like behavior in male mice, perhaps by altering α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission in hippocampal CA3. However, it is still unknown whether metabolites of (R,S)-ketamine can be prophylactic in both sexes. We administered (R,S)-ketamine or its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK) and (2S,6S)-hydroxynorketamine ((2S,6S)-HNK) at various doses 1 week before one of a number of stressors in male and female 129S6/SvEv mice. Patch clamp electrophysiology was used to determine the effect of prophylactic drug administration on glutamatergic activity in CA3. To examine the interaction between ovarian hormones and stress resilience, female mice also underwent ovariectomy (OVX) surgery and a hormone replacement protocol prior to drug administration. (2S,6S)-HNK and (2R,6R)-HNK protected against distinct stress-induced behaviors in both sexes, with (2S,6S)-HNK attenuating learned fear in male mice, and (2R,6R)-HNK preventing stress-induced depressive-like behavior in both sexes. (R,S)-ketamine and (2R,6R)-HNK, but not (2S,6S)-HNK, attenuated large-amplitude AMPAR-mediated bursts in hippocampal CA3. All three compounds reduced N-methyl-D-aspartate receptor (NMDAR)-mediated currents 1 week after administration. Furthermore, ovarian-derived hormones were necessary for and sufficient to restore (R,S)-ketamine- and (2R,6R)-HNK-mediated prophylaxis in female mice. Our data provide further evidence that resilience-enhancing prophylactics may alter AMPAR-mediated glutamatergic transmission in CA3. Moreover, we show that prophylactics against stress-induced depressive-like behavior can be developed in a sex-specific manner and demonstrate that ovarian hormones are necessary for the prophylactic efficacy of (R,S)-ketamine and (2R,6R)-HNK in female mice.


Assuntos
Ketamina , Animais , Fenômenos Eletrofisiológicos , Feminino , Hipocampo/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacologia , Masculino , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Biochem Pharmacol ; 176: 113818, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978378

RESUMO

Nitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models. In addition to NO donors, several other pharmacological agents, such as phosphodiesterase 5 (PDE5) inhibitors have been used to activate the pathway and rescue memory disorders. PDE5 inhibitors, including sildenafil, tadalafil and vardenafil, are marketed for the treatment of erectile dysfunction and arterial pulmonary hypertension due to their vasodilatory properties. The ability of PDE5 inhibitors to interfere with the NO/cGMP/PKG/CREB signaling pathway by increasing the levels of cGMP has prompted the hypothesis that PDE5 inhibition might be used as an effective therapeutic strategy for the treatment of AD. To this end, newly designed PDE5 inhibitors belonging to different chemical classes with improved pharmacologic profile (e.g. higher potency, improved selectivity, and blood-brain barrier penetration) have been synthesized and evaluated in several animal models of AD. In addition, recent medicinal chemistry effort has led to the development of agents concurrently acting on the PDE5 enzyme and a second target involved in AD. Both marketed and investigational PDE5 inhibitors have shown to reverse cognitive defects in young and aged wild type mice as well as transgenic mouse models of AD and tauopathy using a variety of behavioral tasks. These studies confirmed the therapeutic potential of PDE5 inhibitors as cognitive enhancers. However, clinical studies assessing cognitive functions using marketed PDE5 inhibitors have not been conclusive. Drug discovery efforts by our group and others are currently directed towards the development of novel PDE5 inhibitors tailored to AD with improved pharmacodynamic and pharmacokinetic properties. In summary, the present perspective reports an overview of the correlation between the NO signaling and AD, as well as an outline of the PDE5 inhibitors used as an alternative approach in altering the NO pathway leading to an improvement of learning and memory. The last two sections describe the preclinical and clinical evaluation of PDE5 inhibitors for the treatment of AD, providing a comprehensive analysis of the current status of the AD drug discovery efforts involving PDE5 as a new therapeutic target.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Modelos Animais de Doenças , Inibidores da Fosfodiesterase 5/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Humanos , Óxido Nítrico/metabolismo
6.
Mol Neurodegener ; 14(1): 26, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248451

RESUMO

BACKGROUND: Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown. METHODS: This work used a combination of biochemical, electrophysiological and behavioral techniques. Biochemical methods included analysis of phosphorylation of the cAMP-responsive element binding (CREB) protein, a transcriptional factor involved in memory, histone acetylation, and expression immediate early genes c-Fos and Arc. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated both short-term spatial memory and associative memory. These phenomena were examined following oTau elevation. RESULTS: Levels of phospho-CREB, histone 3 acetylation at lysine 27, and immediate early genes c-Fos and Arc, were found to be reduced after oTau elevation during memory formation. These findings led us to explore whether up-regulation of various components of the nitric oxide (NO) signaling pathway impinging onto CREB is capable of rescuing oTau-induced impairment of plasticity, memory, and CREB phosphorylation. The increase of NO levels protected against oTau-induced impairment of LTP through activation of soluble guanylyl cyclase. Similarly, the elevation of cGMP levels and stimulation of the cGMP-dependent protein kinases (PKG) re-established normal LTP after exposure to oTau. Pharmacological inhibition of cGMP degradation through inhibition of phosphodiesterase 5 (PDE5), rescued oTau-induced LTP reduction. These findings could be extrapolated to memory because PKG activation and PDE5 inhibition rescued oTau-induced memory impairment. Finally, PDE5 inhibition re-established normal elevation of CREB phosphorylation and cGMP levels after memory induction in the presence of oTau. CONCLUSIONS: Up-regulation of CREB activation through agents acting on the NO cascade might be beneficial against tau-induced synaptic and memory dysfunctions.


Assuntos
Doença de Alzheimer/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Óxido Nítrico/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-29567338

RESUMO

We have previously identified and reported several potent piperidine-derived amide inhibitors of the human soluble epoxide hydrolase (sEH) enzyme. The inhibition of this enzyme leads to elevated levels of epoxyeicosatrienoic acids (EETs), which are known to possess anti-inflammatory, vasodilatory, and anti-fibrotic effects. Herein, we report the synthesis of 9 analogs of the lead sEH inhibitor and the follow-up structure-activity relationship and liver microsome stability studies. Our findings show that isosteric modifications that lead to significant alterations in the steric and electronic properties at a specific position in the molecule can reduce the efficacy by up to 75-fold. On the other hand, substituting hydrogen with deuterium produces a notable increase (∼30%) in the molecules' half-lives in both rat and human microsomes, while maintaining sEH inhibition potency. These data highlight the utility of isosteric replacement for improving bioavailability, and the newly-synthesized inhibitor structures may thus, serve as a starting point for preclinical development. Our docking study reveals that in the catalytic pocket of sEH, these analogs are in proximity of the key amino acids involved in hydrolysis of EETs.


Assuntos
Amidas , Inibidores Enzimáticos , Epóxido Hidrolases , Metabolismo dos Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Piperidinas , Amidas/química , Amidas/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Feminino , Humanos , Masculino , Piperidinas/química , Piperidinas/farmacologia , Ratos
9.
J Med Chem ; 60(21): 8858-8875, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28985058

RESUMO

Phosphodiesterase 5 (PDE5) hydrolyzes cyclic guanosine monophosphate (cGMP) leading to increased levels of the cAMP response element binding protein (CREB), a transcriptional factor involved with learning and memory processes. We previously reported potent quinoline-based PDE5 inhibitors (PDE5Is) for the treatment of Alzheimer's disease (AD). However, the low aqueous solubility rendered them undesirable drug candidates. Here we report a series of novel PDE5Is with two new scaffolds, 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine and 2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one. Among them, compound 6c, 2-acetyl-10-((3-chloro-4-methoxybenzyl)amino)-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine-8-carbonitrile, the most potent compound, has an excellent in vitro IC50 (0.056 nM) and improved aqueous solubility as well as good efficacy in a mouse model of AD. Furthermore, we are proposing two plausible binding modes obtained through in silico docking, which provide insights into the structural basis of the activity of the two series of compounds reported herein.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Naftiridinas/síntese química , Inibidores da Fosfodiesterase 5/síntese química , Animais , Sítios de Ligação , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Naftiridinas/uso terapêutico , Inibidores da Fosfodiesterase 5/uso terapêutico , Quinolinas , Solubilidade , Relação Estrutura-Atividade
10.
Blood ; 129(1): 88-99, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27784673

RESUMO

Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc.


Assuntos
Caseína Quinase 1 épsilon/antagonistas & inibidores , Neoplasias Hematológicas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/biossíntese , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Camundongos , Oligopeptídeos/farmacologia , Biossíntese de Proteínas , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
11.
RSC Adv ; 5(36): 28527-28535, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257890

RESUMO

The identification of ligands that bind the protein Neutrophil Gelatinase-Associated Lipocalin (NGAL, Siderocalin, Lipocalin-2) have helped to elucidate its function. NGAL-Siderocalin binds and sequesters the iron loaded bacterial siderophore enterochelin (Ent), defining the protein as an innate immune effector. Simple metabolic catechols can also form tight complexes with NGAL-Siderocalin and ferric iron, suggesting that the protein may act as an iron scavenger even in the absence of Ent. While different catechols have been detected in human urine, they have not been directly purified from a biofluid and demonstrated to ligate iron with NGAL-Siderocalin. This paper describes a "natural products" approach to identify small molecules that mediate iron binding to NGAL-Siderocalin. A 10K filtrate of human urine was subjected to multiple steps of column chromatography and reverse-phase HPLC, guided by NGAL-Siderocalin-iron binding assays and LC-MS detection. The co-factor forming a ternary structure with iron and NGAL-Siderocalin was identified as authentic simple catechol (dihydroxybenze) by ESI-HR-Mass, UV, and NMR spectrometric analysis. Comparison of the binding strengths of different catechols demonstrated that the vicinal-dihydroxyl groups were the key functional groups and that steric compatibilities of the catechol ring have the strongest effect on binding. Although catechol was a known NGAL-Siderocalin co-factor, our purification directly confirmed its presence in urine as well as its capacity to serve as an iron trap with NGAL-Siderocalin.

12.
Diabetes ; 64(10): 3396-405, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26068544

RESUMO

The prevalence of obesity-induced type 2 diabetes (T2D) is increasing worldwide, and new treatment strategies are needed. We recently discovered that obesity activates a previously unknown pathway that promotes both excessive hepatic glucose production (HGP) and defective insulin signaling in hepatocytes, leading to exacerbation of hyperglycemia and insulin resistance in obesity. At the hub of this new pathway is a kinase cascade involving calcium/calmodulin-dependent protein kinase II (CaMKII), p38α mitogen-activated protein kinase (MAPK), and MAPKAPK2/3 (MK2/3). Genetic-based inhibition of these kinases improves metabolism in obese mice. Here, we report that treatment of obese insulin-resistant mice with an allosteric MK2/3 inhibitor, compound (cmpd) 28, ameliorates glucose homeostasis by suppressing excessive HGP and enhancing insulin signaling. The metabolic improvement seen with cmpd 28 is additive with the leading T2D drug, metformin, but it is not additive with dominant-negative MK2, suggesting an on-target mechanism of action. Allosteric MK2/3 inhibitors represent a potentially new approach to T2D that is highly mechanism based, has links to human T2D, and is predicted to avoid certain adverse effects seen with current T2D drugs.


Assuntos
Glicemia/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos
13.
ACS Chem Biol ; 10(3): 775-83, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25602169

RESUMO

Equilibrative transporters are potential drug targets; however, most functional assays involve radioactive substrate uptake that is unsuitable for high-throughput screens (HTS). We developed a robust yeast-based growth assay that is potentially applicable to many equilibrative transporters. As proof of principle, we applied our approach to Equilibrative Nucleoside Transporter 1 of the malarial parasite Plasmodium falciparum (PfENT1). PfENT1 inhibitors might serve as novel antimalarial drugs since PfENT1-mediated purine import is essential for parasite proliferation. To identify PfENT1 inhibitors, we screened 64 560 compounds and identified 171 by their ability to rescue the growth of PfENT1-expressing fui1Δ yeast in the presence of a cytotoxic PfENT1 substrate, 5-fluorouridine (5-FUrd). In secondary assays, nine of the highest activity compounds inhibited PfENT1-dependent growth of a purine auxotrophic yeast strain with adenosine as the sole purine source (IC50 0.2-2 µM). These nine compounds completely blocked [(3)H]adenosine uptake into PfENT1-expressing yeast and erythrocyte-free trophozoite-stage parasites (IC50 5-50 nM), and inhibited chloroquine-sensitive and -resistant parasite proliferation (IC50 5-50 µM). Wild-type (WT) parasite IC50 values were up to 4-fold lower compared to PfENT1-knockout (pfent1Δ) parasites. pfent1Δ parasite killing showed a delayed-death phenotype not observed with WT. We infer that, in parasites, the compounds inhibit both PfENT1 and a secondary target with similar efficacy. The secondary target identity is unknown, but its existence may reduce the likelihood of parasites developing resistance to PfENT1 inhibitors. Our data support the hypothesis that blocking purine transport through PfENT1 may be a novel and compelling approach for antimalarial drug development.


Assuntos
Antimaláricos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Trofozoítos/efeitos dos fármacos , Adenosina/metabolismo , Antimaláricos/química , Cultura Axênica , Transporte Biológico/efeitos dos fármacos , Deleção de Genes , Expressão Gênica , Teste de Complementação Genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Trofozoítos/crescimento & desenvolvimento , Trofozoítos/metabolismo , Uridina/análogos & derivados , Uridina/farmacologia
14.
Biometals ; 26(6): 1041-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24158698

RESUMO

Accumulated evidence indicates that the interconversion of iron between ferric (Fe(3+)) and ferrous (Fe(2+)) can be realized through interaction with reactive oxygen species in the Fenton and Haber-Weiss reactions and thereby physiologically effects redox cycling. The imbalance of iron and ROS may eventually cause tissue damage such as renal proximal tubule injury and necrosis. Many approaches were exploited to ameliorate the oxidative stress caused by the imbalance. (-)-Epigallocatechin-3-gallate, the most active and most abundant catechin in tea, was found to be involved in the protection of a spectrum of renal injuries caused by oxidative stress. Most of studies suggested that EGCG works as an antioxidant. In this paper, Multivariate analysis of the LC-MS data of tea extracts and binding assays showed that the tea polyphenol EGCG can form stable complex with iron through the protein Ngal, a biomarker of acute kidney injury. UV-Vis and Luminescence spectrum methods showed that Ngal can inhibit the chemical reactivity of iron and EGCG through forming an Ngal-EGCG-iron complex. In thinking of the interaction of iron and ROS, we proposed that EGCG may work as both antioxidant and Ngal binding siderphore in protection of kidney from injuries.


Assuntos
Proteínas de Fase Aguda/química , Antioxidantes/química , Catequina/análogos & derivados , Ferro/química , Lipocalinas/química , Proteínas Proto-Oncogênicas/química , Antioxidantes/isolamento & purificação , Catequina/química , Catequina/isolamento & purificação , Cloretos , Cromatografia Líquida , Compostos Férricos , Compostos Ferrosos , Lipocalina-2 , Espectrometria de Massas , Oxirredução , Extratos Vegetais/química , Ligação Proteica , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/química , Proteínas Recombinantes/química , Chá/química
15.
Eur J Med Chem ; 60: 285-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23313637

RESUMO

Phosphodiesterase type 5 (PDE5) mediates the degradation of cGMP in a variety of tissues including brain. Recent studies have demonstrated the importance of the nitric oxide/cGMP/cAMP-responsive element-binding protein (CREB) pathway to the process of learning and memory. Thus, PDE5 inhibitors (PDE5Is) are thought to be promising new therapeutic agents for the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by memory loss. To explore this possibility, a series of quinoline derivatives were synthesized and evaluated. We found that compound 7a selectively inhibits PDE5 with an IC(50) of 0.27 nM and readily crosses the blood brain barrier. In an in vivo mouse model of AD, compound 7a rescues synaptic and memory defects. Quinoline-based, CNS-permeant PDE5Is have potential for AD therapeutic development.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Descoberta de Drogas , Inibidores da Fosfodiesterase 5/uso terapêutico , Quinolinas/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/química , Quinolinas/síntese química , Quinolinas/química
16.
Bioorg Med Chem Lett ; 23(2): 417-21, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23237835

RESUMO

A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure-activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Piperidinas/síntese química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Domínio Catalítico , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Estrutura Molecular , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Proteases/farmacologia , Solubilidade , Relação Estrutura-Atividade , Ureia/química , Ureia/farmacologia , Vasodilatadores/síntese química , Vasodilatadores/química , Vasodilatadores/farmacologia
17.
Bioorg Med Chem Lett ; 22(1): 601-5, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22079754

RESUMO

Inhibition of soluble epoxide hydrolase (sEH) has been proposed as a new pharmaceutical approach for treating hypertension and vascular inflammation. The most potent sEH inhibitors reported in literature to date are urea derivatives. However, these compounds have limited pharmacokinetic profiles. We investigated non-urea amide derivatives as sEH inhibitors and identified a potent human sEH inhibitor 14-34 having potency comparable to urea-based inhibitors.


Assuntos
Química Farmacêutica/métodos , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Amidas/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Corantes Fluorescentes/farmacologia , Humanos , Ligação de Hidrogênio , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Concentração Inibidora 50 , Microscopia de Fluorescência/métodos , Modelos Químicos , Solubilidade , Relação Estrutura-Atividade
18.
J Comput Aided Mol Des ; 25(9): 873-83, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21904909

RESUMO

The lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, has recently been identified as a promising drug target for human autoimmunity diseases. Like the majority of protein-tyrosine phosphatases LYP can adopt two functionally distinct forms determined by the conformation of the WPD-loop. The WPD-loop plays an important role in the catalytic dephosphorylation by protein-tyrosine phosphatases. Here we investigate the binding modes of two chemotypes of small molecule LYP inhibitors with respect to both protein conformations using computational modeling. To evaluate binding in the active form, we built a LYP protein structure model of high quality. Our results suggest that the two different compound classes investigated, bind to different conformations of the LYP phosphatase domain. Binding to the closed form is facilitated by an interaction with Asp195 in the WPD-loop, presumably stabilizing the active conformation. The analysis presented here is relevant for the design of inhibitors that specifically target either the closed or the open conformation of LYP in order to achieve better selectivity over phosphatases with similar binding sites.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Domínio Catalítico , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 22/química
19.
Nat Med ; 17(2): 216-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240264

RESUMO

Many proteins have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarker characteristics that link the protein to the injured organ have not yet been described. We generated an Ngal reporter mouse by inserting a double-fusion reporter gene encoding luciferase-2 and mCherry (Luc2-mC) into the Ngal (Lcn2) locus. The Ngal-Luc2-mC reporter accurately recapitulated the endogenous message and illuminated injuries in vivo in real time. In the kidney, Ngal-Luc2-mC imaging showed a sensitive, rapid, dose-dependent, reversible, and organ- and cell-specific relationship with tubular stress, which correlated with the level of urinary Ngal (uNgal). Unexpectedly, specific cells of the distal nephron were the source of uNgal. Cells isolated from Ngal-Luc2-mC mice also revealed both the onset and the resolution of the injury, and the actions of NF-κB inhibitors and antibiotics during infection. Thus, imaging of Ngal-Luc2-mC mice and cells identified injurious and reparative agents that affect kidney damage.


Assuntos
Proteínas de Fase Aguda/fisiologia , Genes Reporter/fisiologia , Rim/lesões , Lipocalinas/fisiologia , Proteínas Oncogênicas/fisiologia , Proteínas de Fase Aguda/genética , Animais , Biomarcadores/sangue , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genes Reporter/efeitos dos fármacos , Gentamicinas/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Lipídeo A/farmacologia , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/genética , Masculino , Camundongos , Camundongos Mutantes/genética , Camundongos Mutantes/fisiologia , Proteínas Oncogênicas/sangue , Proteínas Oncogênicas/genética
20.
J Med Chem ; 54(2): 562-71, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21190368

RESUMO

The lymphoid tyrosine phosphatase (Lyp, PTPN22) is a critical negative regulator of T cell antigen receptor (TCR) signaling. A single-nucleotide polymorphism (SNP) in the ptpn22 gene correlates with the incidence of various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Since the disease-associated allele is a more potent inhibitor of TCR signaling, specific Lyp inhibitors may become valuable in treating autoimmunity. Using a structure-based approach, we synthesized a library of 34 compounds that inhibited Lyp with IC(50) values between 0.27 and 6.2 µM. A reporter assay was employed to screen for compounds that enhanced TCR signaling in cells, and several inhibitors displayed a dose-dependent, activating effect. Subsequent probing for Lyp's direct physiological targets by immunoblot analysis confirmed the ability of the compounds to inhibit Lyp in T cells. Selectivity profiling against closely related tyrosine phosphatases and in silico docking studies with the crystal structure of Lyp yielded valuable information for the design of Lyp-specific compounds.


Assuntos
Benzofuranos/síntese química , Proteína Tirosina Fosfatase não Receptora Tipo 22/antagonistas & inibidores , Salicilatos/síntese química , Benzofuranos/química , Benzofuranos/farmacologia , Humanos , Células Jurkat , Modelos Moleculares , Fatores de Transcrição NFATC/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/química , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Receptores de Antígenos de Linfócitos T/fisiologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Salicilatos/química , Salicilatos/farmacologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA