Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(8): 6921-6936, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38613801

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is a refractory disease with complex pathogenesis, and its pathogenesis is not clear. The present study aimed to investigate the potential target and related mechanism of Compound Sophora Decoction (CSD) in treating UC. METHODS: A network pharmacology approach predicted the components and targets of CSD to treat UC, and cell and animal experiments confirmed the findings of the approach and a new target for CSD treatment of UC. RESULTS: A total of 155 potential targets were identified for CSD treatment of UC, with some related to macrophage polarization, such as nitric oxide synthase (NOS2), also known as inducible nitric oxide synthase (iNOS). GO and KEGG enrichment analysis indicated that oxidative stress response and multiple inflammatory signaling pathways such as TNF-α may play a significant role. In vitro experiments revealed that Interferon-stimulated DNA (ISD) interference can cause polarization imbalances in Raw 264.7 and bone marrow-derived macrophages (BMDMs). Flow cytometry demonstrated that polarization of macrophages in the intestine, spleen, and lymph nodes in vivo was also unbalanced after dextran sulfate sodium (DSS) modeling with pathological intestinal injury. Both in vitro and in vivo studies indicated that after inducing inflammation, the levels of macrophage polarization-related markers (iNOS and Arg1) and inflammation-related factors (CCL17, IL10, TNF-α, and CXCL10) changed, accompanied by increased expression of cGAS. However, CSD treatment based on inflammation can inhibit the expression of cGAS protein and mRNA, lower the level of inflammatory factors, promote the expression of anti-inflammatory factors, and regulate macrophage polarization. CONCLUSION: We concluded that CSD alleviated DSS-induced UC by inhibiting cGAS, thus regulating macrophage polarization.


Assuntos
Colite Ulcerativa , Macrófagos , Farmacologia em Rede , Sophora , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Camundongos , Sophora/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Nucleotidiltransferases/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Aging (Albany NY) ; 16: 5336-5353, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466649

RESUMO

Macrophage-driven immune dysfunction of the intestinal mucosa is involved in the pathophysiology of ulcerative colitis (UC). Emerging evidence indicates that there is an elevation in miR-31-5p levels in UC, which is accompanied by a downregulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) expression. Nevertheless, the precise influence of miR-31-5p on macrophage polarization and the integrity of the intestinal epithelial barrier in UC remains to be fully elucidated. This study explored the role of miR-31-5p and AMPK in UC through a bioinformatics investigation. It investigated the potential of miR-31-5p antagomir to shift macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype and enhance the intestinal mucosal barrier in DSS-induced UC mice. Additionally, RAW264.7 cells stimulated with LPS were employed to confirm the reversal of miR-31-5p antagomir's therapeutic effect under AMPK inhibition. The findings demonstrated that miR-31-5p antagomir penetrated colonic tissues and ameliorated DSS-induced experimental colitis. Transformation of spleen and mesenteric lymph node macrophages from M1 to M2 type was seen in the DSS+miR-31-5p antagomir group. AMPK/Sirt1 expression increased while NLRP3 expression decreased. Expression of M2-related genes and proteins was enhanced and that of the M1 phenotype suppressed. Tight junction proteins, ZO-1 and occludin, were increased. The therapeutic effects of miR-31-5p antagomir transfection into RAW264.7 cells were repressed when AMPK expression was inhibited. Therefore, our results suggest that suppression of miR-31-5p expression transformed macrophages from M1 to M2, ameliorated inflammation and repaired the intestinal epithelium to alleviate DSS-induced colitis. AMPK/Sirt1/NLRP3 was involved.


Assuntos
Colite Ulcerativa , Colite , MicroRNAs , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Antagomirs , Colite/induzido quimicamente , Modelos Animais de Doenças , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Sirtuína 1/genética
3.
Medicine (Baltimore) ; 102(46): e35957, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37986331

RESUMO

To explore the anti-tumor effects of Scutellaria baicalensis on osteosarcoma and its mechanism. Network pharmacology and molecular docking techniques were applied to investigate the effect and mechanism of Scutellaria baicalensis on osteosarcoma (OS). We analyzed the protein-protein interaction (PPI) network for potential targets of Scutellaria baicalensis for treating osteosarcoma and identified hub targets. We used KM curves to screen for hub targets that could effectively prolong the survival time of OS patients. We systematically performed gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the Scutellaria baicalensis potential targets and predicted the Scutellaria baicalensis molecular mechanism and function in treating osteosarcoma. Through molecular docking, the binding process between the hub targets, which could prolong the survival time of sarcoma patients, and Scutellaria baicalensis was simulated. PPI network analysis of potential therapeutic targets discriminated 12 hub targets. The KM curves of the hub targets showed that upregulation of RXRA, RELA, ESR1, TNF, IL6, IL1B, and RB1 expression, and downregulation of MAPK1, VEGFA, MAPK14, CDK1, and PPARG expression were effective in improving the 5-year survival rate of OS patients. GO and KEGG enrichment demonstrated that Scutellaria baicalensis regulated multiple signaling pathways of OS. Molecular docking results indicated that Scutellaria baicalensis could bind freely to the above hub target, which could prolong the survival time of sarcoma patients. Scutellaria baicalensis acted on osteosarcoma by regulating a signaling network formed by hub targets connecting multiple signaling pathways. Scutellaria baicalensis appears to have the potential to serve as a therapeutic drug for osteosarcoma and to prolong the survival of OS patients.


Assuntos
Neoplasias Ósseas , Medicamentos de Ervas Chinesas , Osteossarcoma , Sarcoma , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Scutellaria baicalensis , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética
4.
Mol Immunol ; 150: 1-8, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908411

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) have been widely studied for their applications in immunoregulation and tissue repair. However, the therapeutic effects of BMSCs in the body are limited, partly due to the low homing efficiency of BMSCs to affected parts. The stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis is well known to play an essential role in the homing of BMSCs. Interleukin 35 (IL-35) is a newly discovered cytokine confirmed to inhibit overactivated immune function and have a good therapeutic effect on autoimmune diseases. In this study, we innovatively developed dual gene modification of BMSCs by transducing CXCR4 and IL-35 and found that the migration and immunomodulatory activity of genetically engineered BMSCs were significantly enhanced compared to their natural counterparts. These results suggest that BMSCs modified by dual overexpression of CXCR4 and IL-35 may provide a potential treatment strategy for autoimmune diseases.


Assuntos
Doenças Autoimunes , Transplante de Células-Tronco Mesenquimais , Células da Medula Óssea , Movimento Celular/genética , Quimiocina CXCL12 , Humanos , Imunidade , Interleucinas/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Receptores CXCR4/genética , Células-Tronco
5.
Biomed Pharmacother ; 133: 110937, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217689

RESUMO

BACKGROUND: Compound sophorae decoction (CSD), a Chinese Herbal decoction, is frequently clinically prescribed for patients suffered from ulcerative colitis (UC) characterized by bloody diarrhea. Yet, the underlying mechanism about how this formulae works is remain elusive. METHODS: In the present study, the experimental colitis in C57BL/6 J mice was induced by oral administration of standard diets containing 3% dextran sodium sulfate (DSS), and CSD was given orally for treatment at the same time. The clinical symptoms including stool and body weight were recorded each day, and colon length and its histopathological changes were observed. Apoptosis of colonic epithelium was studied by detecting protein expression of cleaved caspase-3, and cell proliferation by Ki-67 immunohistochemistry. Tight junction complex like ZO-1 and occludin were also determined by transmission electron microscope and immunofluorescence. The concentration of FITC-dextran 4000 was measured to evaluate intestinal barrier permeability and possible signaling pathway was investigated. Mucin2 (MUC2) and notch pathway were tested through western blot. The M1/M2 ratio in spleen and mesenteric lymph nodes were detected by flow cytometry. And the mRNA levels of iNOS and Arg1 were examined by qRT-PCR. RESULTS: CSD could significantly alleviate the clinical manifestations and pathological damage. Body weight loss and DAI score of mice with colitis were improved and shortening of colon was inhibited. The administration of CSD was able to reduce apoptotic epithelial cells and facilitate epithelial cell regeneration. Increased intestinal permeability was reduced in DSS-induced colitis mice. In addition, CSD treatment obviously up-regulated the expression of ZO-1 and occludin and the secretion of MUC2, regulated notch signaling, and decreased the ratio of M1/M2. CONCLUSIONS: These data together suggest that CSD can effectively mitigate intestinal inflammation, promote phenotypic change in macrophage phenotype and enhance colonic mucosal barrier function by, at least in part, regulating notch signaling in mice affected by DSS-induced colitis.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Receptores Notch/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mucina-2/metabolismo , Ocludina/metabolismo , Permeabilidade , Regeneração/efeitos dos fármacos , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1/metabolismo
6.
Mol Immunol ; 118: 191-200, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896495

RESUMO

In our previous studies, we found that extracellular vesicles in mesenchymal stem cells can alleviate ulcerative colitis. In view of the fact that extracellular vesicles have the same immunomodulatory effects as their maternal cells and considering the important role of Th17 cells in the pathogenesis of ulcerative colitis, we aimed to investigate whether extracellular vesicles from mesenchymal stem cells can affect the differentiation of Th17 cells in ulcerative colitis. Histone H3K27me3 can regulate the expression of Th17 cell-related genes. We focused on determining whether the effect of extracellular vesicles on Th17 cells in ulcerative colitis is related to H3K27me3. For our experiments, we used low, medium and high doses of extracellular vesicles from mesenchymal stem cells to interfere with TNBS-induced colitis in rats and then evaluated the alleviation of inflammation and observed the impact of the extracellular vesicles on the differentiation of Th17 cells in ulcerative colitis. In addition, we detected the levels of histone H3K27me3 and the expression of its upstream methyltransferase and demethylase in the colon tissues of each group. Our data showed that extracellular vesicles from bone marrow mesenchymal stem cells can inhibit the abnormal differentiation of Th17 cells in ulcerative colitis, and the content of histone H3K27me3 was also changed accordingly. Our study suggests that extracellular vesicles from mesenchymal stem cells could inhibit the differentiation of Th17 cells in ulcerative colitis by regulating H3K27me3. This study reveals that H3K27me3 is an important target for inflammatory immune diseases associated with abnormal Th17 cell differentiation and indicates that mesenchymal stem cell extracellular vesicles are promising agents for the treatment of ulcerative colitis.


Assuntos
Diferenciação Celular/imunologia , Colite Ulcerativa/imunologia , Vesículas Extracelulares/imunologia , Histonas/imunologia , Células-Tronco Mesenquimais/imunologia , Células Th17/imunologia , Animais , Colo/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
Artigo em Inglês | MEDLINE | ID: mdl-31772601

RESUMO

Compound sophorae decoction (CSD), a traditional Chinese medicine (TCM) formula, has been voluminously used in China to deal with ulcerative colitis and gained significant therapeutic effect. Tremendous explorations have unraveled a contributory role of inflammatory bowel disease (IBD) like ulcerative colitis (UC) and Crohn's disease (CD) at the onset of colorectal cancer, scilicet, and colitis-related cancer (CRC). In light of the anti-inflammatory properties of CSD in UC, we appraised its chemoprevention capacity and underlying mechanism in ulcerative colitis-related colorectal cancer (UCRCC), employing a model of azoxymethane (AOM) plus dextran sulfate sodium- (DSS-) induced colorectal cancer (CRC) in C57BL/6 mice. Rapturously, our results illuminated the ameliorative effect of CSD against UCRCC in mice portrayed by lesser polyps or adenomas, attenuated colonic xenograft tumor growth in company with the preferable well-being of mice in contrast to the Model Group. We examined significant downregulation of proinflammatory cytokines such as TNF-α, NF-κB, IL-6, STAT3, and IL-17 after exposure to CSD, with the concomitant repression of inflammation-associated proteins, including COX-2 and iNOS. Independent of this, treatment with CSD declined the proportion of T helper 17 cells (Th17) and protein level of matrix metallopeptidase 9 (MMP-9). Moreover, transmission electron microscopy (TEM) detected observably suppressed mitophagy in mice administered with CSD and that was paralleled by the pro-apoptotic effect as indicated by upregulating caspase-3 together with caspase-9 and deregulating B-cell lymphoma 2 (Bcl-2). In closing, these findings suggest CSD executes the UCRCC-inhibitory activity through counteracting inflammatory responses and rescuing detuning of apoptosis as well as neutralizing overactive mitophagy, concurring to build up an oncosuppressive microenvironment.

8.
Biosci Rep ; 39(7)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31262973

RESUMO

Oxymatrine (OMT) is an important quinoxaline alkaloid that has a wide range of pharmacological effects and has been shown to alleviate ulcerative colitis due to its profound anti-inflammatory effects. The RhoA/ROCK (Rho kinase) signaling pathway has been shown to be related to the pathogenesis of several autoimmune diseases; however, the specific mechanisms of RhoA/ROCK signaling in inflammatory bowel disease (IBD) remain elusive. Therefore, we sought to determine whether OMT could ameliorate acute intestinal inflammation by targeting the RhoA/ROCK signaling pathway. The potential therapeutic effect of OMT on acute intestinal inflammation and its impact on the RhoA/ROCK signaling pathway were assessed in six groups of mice treated with low, medium and high doses of OMT (25, 50 and 100 mg/kg, respectively), and an inhibitor of ROCK, Y-27632, as a positive control, after initiating dextran sodium sulfate (DSS)-induced acute intestinal inflammation. The model group and normal group were injected intraperitoneally with equal doses of PBS. Our results showed that OMT treatment could protect the integrity of the epithelial barrier, relieve oxidative stress, inhibit the expression of inflammatory mediators and pro-inflammatory cytokines, restrain the differentiation of Th17 cells and promote the differentiation of Treg cells via inhibition of the RhoA/ROCK pathway, thus providing therapeutic benefits for ulcerative colitis (UC). Therefore, inhibiting the RhoA/ROCK pathway might be a new approach that can be used in UC therapy, which deserves to be investigated further.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Quinolizinas/farmacologia , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética , Amidas/farmacologia , Animais , Diferenciação Celular , Proliferação de Células , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica , Humanos , Interleucinas/genética , Interleucinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Piridinas/farmacologia , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/patologia , Resultado do Tratamento , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/imunologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/imunologia
9.
Inflammation ; 42(5): 1530-1541, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31102124

RESUMO

Autotaxin-lysophosphatidic acid (ATX-LPA) axis is closely associated with several inflammation-related diseases. In the colonic mucosa of patients with chronic ulcerative colitis (UC), the expression of ATX and the percentage of Th17 cells are found to increase. However, it is unclear whether ATX-LPA axis affects the differentiation of Th17 cells in chronic UC. To investigate whether ATX-LPA axis contributes to Th17 cell differentiation, a mouse model of chronic UC was established by drinking water with DSS at intervals. ATX inhibitor was used as an intervention. The disease active index (DAI), colonic weight to length ratio, colon length, colon histopathology, and MAdCAM-1 were observed. Additionally, the expression of ATX, LPA receptor, CD34, IL-17A, IL-21, IL-6, ROR-γt, STAT3 in colonic tissue, and the percentage of Th17 cells in spleens and mesenteric lymph nodes (MLNs) were measured using different methods. ATX blockade was able to relieve symptoms and inflammatory response of DSS-induced chronic colitis. The DAI and colonic weight to length ratio were apparently decreased, while the colon length was increased. The pathological damage and colitis severity were lighter in the inhibitor group than that in the DSS group. Inhibiting ATX reduced the expression of ATX, LPA receptor, and CD34 and also decreased the percentages of Th17 cells in spleens and MLNs and the expressions of IL-17A and IL-21, as well as the factors in Th17 cell signaling pathway including IL-6, ROR-γt, and STAT3 in colonic tissue. ATX-LPA axis blockade could alleviate inflammation by suppressing Th17 cell differentiation in chronic UC.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colite/tratamento farmacológico , Inflamação/prevenção & controle , Lisofosfolipídeos/antagonistas & inibidores , Diester Fosfórico Hidrolases/efeitos dos fármacos , Células Th17/citologia , Animais , Doença Crônica , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Lisofosfolipídeos/farmacologia , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/farmacologia
10.
Biomed Pharmacother ; 109: 2396-2408, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551499

RESUMO

OBJECTIVE: Compound sophorae decoction, a Chinese medicinal formulae composed of six Chinese herbs, is effective for the clinical treatment of ulcerative colitis (UC). Some of its effective monomers had been proven to have suppressive effect on UC models. The aim of this study is to further explore the mechanism whether compound sophorae decoction ameliorates dextran sodium sulfate (DSS)-induced mice colitis by regulating the balance between T helper (Th) 17 and regulatory T (Treg) cells. METHODS: Experimental model of UC, established by drinking water with DSS, was treated with compound sophorae decoction and mesalazine. The stool, activity, body weight of the mice, colon length and colon histopathology were observed to evaluate severity of colitis. The concentration of cytokines in colonic tissues were detected by ELISA. The expression of phosphorylated nuclear factor-kappaB (NF-κB) p65, STAT3 and phosphorylated STAT3 in colonic tissues were determined by western blotting and immunohistochemistry. The percentage of Th17 and Treg cells in spleen and mesenteric lymph nodes (MLNs) were detected by flow cytometry. The levels of transcription factor ROR-γt and FOXP3 in colon tissues were detected by qRT-PCR and immunohistochemistry. RESULTS: The aqueous extract of compound sophorae decoction was able to improve the symptoms and pathological damage of mice. The body weight of mice were increased and DAI were significantly decreased; ulcers were slighter than DSS group. The administration of compound sophorae decoction reduced the level of inflammatory factors interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and phospho-NF-κB p65, and also decreased the proportions of Th17 cells in spleen and MLNs and the expression of ROR-γt, IL-17A, STAT3, IL-6 in colonic tissues; while the percentage of Treg cells in spleen and MLNs and the expression of FOXP3, transforming growth factor (TGF)-ß1, IL-10 in colonic tissues were upregulated. CONCLUSION: Overall, this study suggested that compound sophorae decoction significantly improves the symptoms and the pathological damage of mice with colitis and influences the immune function by regulating Th17/Treg cell balance in DSS-induced colitis in mice.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Sophora , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
11.
Int Immunopharmacol ; 64: 401-410, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30253332

RESUMO

Th17 cells play an important role in the immune imbalance and inflammatory state in colonic mucosa of Inflammatory Bowel Disease (IBD) and to clarify the mechanism that affect the differentiation of Th17 cells will help us find a new target for the treatment of IBD. MiR-155 which is reported to have an important role in regulating immune system function is also detected to be significantly up-regulated in colonic tissues of IBD patients. However, whether and how miR-155 affects the differentiation of Th17 cells in the colon of IBD patients is still worth studying. Here, we investigated the role of miR-155 in TNBS-induced rat colitis. Firstly, we found that the disease activity index (DAI) and Colon pathological changes were significantly reduced (P < 0.05) by using miR-155 inhibition sequences delivered by lentiviral vector, which revealed that miR-155 inhibition ameliorated TNBS-Induced experimental colitis. Then, we carried out flow cytometry, ELISA, qRT-PCR, and found that in TNBS+miR-155 inhibition group, the proportion of Th17 cells in spleens and mesenteric lymph nodes (MLNs) and the level of the Th17 cell-associated cytokines IL-6, IL-17A, IL-17F and IL-21 in colon tissues were significantly reduced (P < 0.05), which revealed that miR-155 inhibition regulated the differentiation and function of Th17 cells. Finally, we discovered that Jarid2 was significantly elevated (P < 0.05) by miR-155 inhibition and notch1 expression was inversely correlated with Jarid2 by using Immunohistochemistry and western blot. This study suggests that miR-155 inhibition ameliorates TNBS-induced colitis by regulating the Th17 cells differentiation and function and Jarid2/notch1 is closely related with the process.


Assuntos
Colite/prevenção & controle , MicroRNAs/antagonistas & inibidores , Complexo Repressor Polycomb 2/fisiologia , Células Th17/fisiologia , Animais , Diferenciação Celular , Colite/induzido quimicamente , Masculino , MicroRNAs/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor Notch1/fisiologia , Células Th17/citologia , Ácido Trinitrobenzenossulfônico
12.
Int Immunopharmacol ; 61: 346-354, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29933193

RESUMO

Our study was to explore the potential role of miRNA-200b in modulating tumorigenesis in the model of ulcerative colitis-related colorectal cancer (UCRCC) and, further, to decipher the underlying mechanisms associated with this effect. In this study, we examined a greater number of polyps or adenomas, a higher grade of epithelial dysplasia accompanied with a decrease in survival ratio in azoxymethane (AOM)/dextran sulfate sodium (DSS) model mice compared to mice treated with over-expressed miRNA-200b. Surprisingly, enforced miRNA-200b expression significantly suppressed AOM/DSS-induced up-regulation of oncologic markers including ß-catenin and CD133. Independent of this, treatment with miRNA-200b obviously attenuated inflammatory responses, as indicated by down-regulating tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß) and blockade of AKT2-mediated NF-κB/IL-6/STAT3 signaling pathway. Furthermore, a simultaneous shift in epithelial-mesenchymal transition (EMT) markers such as E-cadherin and N-cadherin were observed to be increased and decreased, respectively. Coupled with the associated influence of over-expressed miRNA-200b were change in colorectal cell morphology shown by Transmission electron microscope (TEM) and a decrease in expression of rho-kinase2 (ROCK2) together with AKT2 phosphorylation (p-AKT2). Moreover, mice which were transfected with negative control of miRNA-200b possessed results that were in line with that obtained from AOM/DSS model mice. Additionally, we demonstrated that the 3'untranslated region (UTR) of AKT2 was a direct target of miRNA-200b through bioinformatics analysis and dual-luciferase assay. Collectively, these findings suggest that miRNA-200b's contribution to tumor-suppressing program was correlated with EMT and inflammatory responses in a AKT2-dependent manner.


Assuntos
Colite Ulcerativa/terapia , Neoplasias Colorretais/terapia , Terapia Genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Azoximetano , Células Cultivadas , Colite Ulcerativa/induzido quimicamente , Neoplasias Colorretais/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Transgenes/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Biochem Biophys Res Commun ; 499(4): 727-734, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29524405

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) hold great promise for the treatment of inflammatory bowel disease owing to their immunosuppressive property and tissue healing potential. The balance between regulatory T cells (Tregs) and T helper (Th)17 cells plays a crucial role in BMSC-mediated immunosuppression. Interleukin (IL)-35 is a newly identified anti-inflammatory cytokine required for the expansion of Tregs and suppression of Th17 cell differentiation. IL-35 can amplify the immunosuppressive property of BMSCs when overexpressed in these cells. However, the reparative capability of BMSCs in vivo is limited, partly due to the poor homing efficiency of BMSCs to inflamed colons. Up-regulation of CXC chemokine receptor 4 (CXCR4) expression in BMSCs may affect the directional homing of implanted BMSCs via stromal-derived factor-1. In this study, by lentivirus-mediated introduction of CXCR4 and IL-35 genes to modify rat BMSCs, we observed enhanced migration and strengthened immunomodulatory activities of the genetically engineering BMSCs. These results suggest that modification of BMSCs by dual expression of CXCR4 and IL-35 may provide an effective therapeutic strategy for inflammatory bowel disease.


Assuntos
Colite/imunologia , Colite/terapia , Subunidade p35 da Interleucina-12/metabolismo , Interleucinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores CXCR4/metabolismo , Linfócitos T Reguladores/patologia , Células Th17/patologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/patologia , Fatores de Transcrição Forkhead/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Transfecção , Ácido Trinitrobenzenossulfônico , Regulação para Cima/efeitos dos fármacos
14.
Int Immunopharmacol ; 53: 149-157, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107215

RESUMO

Oxymatrine (OMT), an alkaloid derived from the root of the Sophora flavescens, has been reported to possess a significant effect on relieving UC owing to its anti-inflammatory property. But the other therapeutic mechanism of OMT remains unclear. Recent studies have found, PI3K/AKT signaling pathway is involved in the pathogenesis of UC by pro-inflammatory effects and activating T cells. Moreover, PI3K/AKT pathway is one of the most important pathways for regulating cell apoptosis. Thus, we aim to explore whether OMT protects against UC by targeting PI3K/AKT pathway. We established the UC mice models, using LY294002 (a specific inhibitor of PI3K/AKT) as a positive control, to observe the effect of low, medium and high dose of OMT on UC and its influence on PI3K/AKT signaling pathway. Our data indicated that OMT can significantly ameliorate UC through anti-inflammatory, pro-apoptotic, down-regulating the differentiation of Th1 and Th17 cells via PI3K/AKT pathway. This study reveals that PI3K/AKT signaling pathway is a potential mechanism of OMT-induced UC remission and suggests that OMT is a promising therapeutic agent for the treatment of UC.


Assuntos
Alcaloides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite/tratamento farmacológico , Quinolizinas/uso terapêutico , Células Th1/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/administração & dosagem , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Morfolinas/administração & dosagem , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sophora/imunologia , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos
15.
Biochem Biophys Res Commun ; 488(1): 6-14, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28461115

RESUMO

MicroRNAs (miRNAs) play an important role in regulating immune system function by mRNA destabilisation or inhibition of translation. Recently, miR-155 was detected to be significantly up-regulated in colonic tissues of patients with active UC. However, it is unknown whether miR-155 is involved in the pathogenesis of UC and how it influences immune response in dextran sulfate sodium (DSS)-induced colitis mice. Here, we investigated the role of miR-155 in UC. Firstly, through bioinformatics analysis and luciferase report assay, we found Jarid2 was a direct target of miR-155; then, we carried out in situ hybridization, immunofluorescence and flow cytometry, and revealed that miR-155 levels were increased, Jarid2 levels were decreased and the frequency of Th17 cells was elevated in DSS-induced mice; we also used lentiviral vector to deliver miR-155 inhibition sequences to silence miR-155 that was effectively taken up by epithelial cells. MiR-155 inhibition attenuated DSS-induced colonic damage and inhibited Th17 cells differentiation. This study suggests that miR-155 plays a host-damaging role during DSS-induced colitis mice and induces Th17 differentiation by targeting Jarid2.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colite/tratamento farmacológico , MicroRNAs/farmacologia , Complexo Repressor Polycomb 2/metabolismo , Células Th17/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/química , MicroRNAs/genética , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética , Relação Estrutura-Atividade , Células Th17/metabolismo
16.
PLoS One ; 10(10): e0140551, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469068

RESUMO

The administration of bone mesenchymal stem cells (BMSCs) could reverse experimental colitis, and the predominant mechanism in tissue repair seems to be related to their paracrine activity. BMSCs derived extracellular vesicles (BMSC-EVs), including mcirovesicles and exosomes, containing diverse proteins, mRNAs and micro-RNAs, mediating various biological functions, might be a main paracrine mechanism for stem cell to injured cell communication. We aimed to investigate the potential alleviating effects of BMSC-EVs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Intravenous injection of BMSC-EVs attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI) and histological colonic damage. In inflammation response, the BMSC-EVs treatment significantly reduced both the mRNA and protein levels of nuclear factor kappaBp65 (NF-κBp65), tumor necrosis factor-alpha (TNF-α), induciblenitric oxidesynthase (iNOS) and cyclooxygenase-2 (COX-2) in injured colon. Additionally, the BMSC-EVs injection resulted in a markedly decrease in interleukin-1ß (IL-1ß) and an increase in interleukin-10 (IL-10) expression. Therapeutic effect of BMSC-EVs associated with suppression of oxidative perturbations was manifested by a decrease in the activity of myeloperoxidase (MPO) and Malondialdehyde (MDA), as well as an increase in superoxide dismutase (SOD) and glutathione (GSH). BMSC-EVs also suppressed the apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in colitis rats. Data obtained indicated that the beneficial effects of BMSC-EVs were due to the down regulation of pro-inflammatory cytokines levels, inhibition of NF-κBp65 signal transduction pathways, modulation of anti-oxidant/ oxidant balance, and moderation of the occurrence of apoptosis.


Assuntos
Colite Ulcerativa/prevenção & controle , Vesículas Extracelulares/metabolismo , Inflamação/prevenção & controle , Células-Tronco Mesenquimais/citologia , Ácido Trinitrobenzenossulfônico/efeitos adversos , Animais , Apoptose , Células Cultivadas , Colite Ulcerativa/etiologia , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/genética , Inflamação/imunologia , Masculino , Estresse Oxidativo , Comunicação Parácrina , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA