Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 278: 116409, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701656

RESUMO

Environmental benzo(a)pyrene (BaP) and itsmetabolite benzo(a)pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE), classic endocrine disrupting chemical and persistent organic pollutant, could cause miscarriage. However, the detailed mechanisms are still largely unclear and should be further explored. In this study, we discovered that exposure of trophoblast cells with BPDE could suppressed cell invasion/migration by inhibiting MEST/VIM (Vimentin) pathway. Moreover, BPDE exposure also increased lnc-HZ01 expression level, which further inhibited MEST/VIM pathway and then suppressed invasion/migration. Knockdown of lnc-HZ01 or overexpression of MEST could efficiently rescue invasion/migration of BPDE-exposed Swan 71 cells. Furthermore, lnc-HZ01 was highly expressed and MEST/VIM were lowly expressed in recurrent miscarriage (RM) villous tissues compared with healthy control (HC) group. Finally, we also found that BaP exposure inhibited murine Mest/Vim pathway in placental tissues and induced miscarriage in BaP-exposed mice. Therefore, the regulatory mechanisms were similar in BPDE-exposed human trophoblast cells, RM villous tissues, and placental tissues of BaP-exposed mice with miscarriage, building a bridge to connect BaP/BPDE exposure, invasion/migration, and miscarriage. This study provided novel insights in the toxicological effects and molecular mechanisms of BaP/BPDE-induced miscarriage, which is helpful for better elucidating the toxicological risks of BaP/BPDE on female reproduction.


Assuntos
7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido , Benzo(a)pireno , Movimento Celular , Regulação para Baixo , Trofoblastos , Trofoblastos/efeitos dos fármacos , Feminino , Animais , Movimento Celular/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Humanos , Camundongos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Gravidez , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Linhagem Celular , Aborto Espontâneo/induzido quimicamente
2.
Ecotoxicol Environ Saf ; 237: 113564, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483139

RESUMO

Human trophoblast cell apoptosis may induce miscarriage. Trophoblast cells are sensitive to environmental BaP-7,8-dihydrodiol-9,10-epoxide (BPDE). However, how BPDE induces human trophoblast cell apoptosis is still largely elusive. In this work, we used BPDE-treated human trophoblast cells and villous tissues collected from recurrent miscarriage and health control groups to explore the underlying mechanism of BPDE-induced human trophoblast cell apoptosis. Continued with our recent work, we found that lncRNA HZ01 (lnc-HZ01) could induce human trophoblast cell apoptosis. In mechanism, lnc-HZ01 up-regulated p53 expression level by suppressing its MDM2-mediated proteasomal degradation. Meanwhile, we found that p53 acted as lnc-HZ01 transcription factor and promoted lnc-HZ01 transcription. Thus, lnc-HZ01 and p53 composed a positive feedback loop in human trophoblast cells. In normal trophoblast cells, relatively low levels of lnc-HZ01 and p53 suppressed p53/caspase-3 apoptosis pathway, giving normal pregnancy. Upon BPDE exposure, BPDE up-regulated the expression levels of lnc-HZ01 and p53, triggered this positive feedback loop, activated the p53/caspase-3 apoptosis pathway, and then induced miscarriage. Collectively, we discovered new mechanism by which lnc-HZ01 regulated BPDE-induced human trophoblast cell apoptosis, providing scientific basis for the diagnosis and treatment of unexplained recurrent miscarriage.


Assuntos
Aborto Habitual , RNA Longo não Codificante , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Aborto Habitual/induzido quimicamente , Aborto Habitual/metabolismo , Apoptose , Caspase 3/metabolismo , Retroalimentação , Feminino , Humanos , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA