Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur J Med Res ; 29(1): 228, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610044

RESUMO

The alteration of metabolic processes has been found to have significant impacts on the development of hepatocellular carcinoma (HCC). Nevertheless, the effects of dysfunction of tyrosine metabolism on the development of HCC remains to be discovered. This research demonstrated that tyrosine hydroxylase (TH), which responsible for the initial and limiting step in the bio-generation of the neuro-transmitters dopamine and adrenaline, et al. was shown to be reduced in HCC. Increased expression of TH was found facilitates the survival of HCC patients. In addition, decreased TH indicated larger tumor size, much more numbers of tumor, higher level of AFP, and the presence of cirrhosis. TH effectively impairs the growth and metastasis of HCC cells, a process dependent on the phosphorylation of serine residues (S19/S40). TH directly binds to Smad2 and hinders the cascade activation of TGFß/Smad signaling with the treatment of TGFß1. In summary, our study uncovered the non-metabolic functions of TH in the development of HCC and proposes that TH might be a promising biomarker for diagnosis as well as an innovative target for metastatic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Tirosina 3-Mono-Oxigenase/genética , Transdução de Sinais , Linhagem Celular
2.
Mol Cell Biochem ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507020

RESUMO

Immunotherapy is regarded as a potent cancer treatment, with DC vaccines playing a crucial role. Although clinical trials have demonstrated the safety and efficacy of DC vaccines, loading antigens in vitro is challenging, and their therapeutic effects remain unpredictable. Moreover, the diverse subtypes and maturity states of DCs in the body could induce both immune responses and immune tolerance, potentially affecting the vaccine's efficacy. Hence, the optimization of DC vaccines remains imperative. Our study discovered a new therapeutic strategy by using CT26 and MC38 mouse colon cancer models, as well as LLC mouse lung cancer models. The strategy involved the synergistic activation of DCs through intertumoral administration of TLR4 agonist high-mobility group nucleosome binding protein 1 (HMGN1) and TLR7/8 agonist (R848/resiquimod), combined with intraperitoneal administration of TNFR2 immunosuppressant antibody. The experimental results indicated that the combined use of HMGN1, R848, and α-TNFR2 had no effect on LLC cold tumors. However, it was effective in eradicating CT26 and MC38 colon cancer and inducing long-term immune memory. The combination of these three drugs altered the TME and promoted an increase in anti-tumor immune components. This may provide a promising new treatment strategy for colon cancer.

3.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477088

RESUMO

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Assuntos
Neoplasias Colorretais , Interleucina-6 , Humanos , Interleucina-6/efeitos adversos , Interleucina-6/metabolismo , Fosforilação , beta Catenina/metabolismo , Via de Sinalização Wnt , Janus Quinase 2/metabolismo , Neoplasias Colorretais/genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
4.
Int J Biol Sci ; 19(10): 3184-3199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416767

RESUMO

Metastasis is a significant cause of high mortality in lung cancer. Lymph node (LN) metastasis is the most common metastatic pathway in non-small cell lung cancer and the most crucial factor affecting the prognosis of NSCLC. Nevertheless, the molecular mechanism underlying metastasis is unknown. We demonstrated that higher NADK expression suggests worsened survival prognosis, and NADK expression positively correlates with the lymph node metastasis rate and TNM and AJCC stages in NSCLC patients. Moreover, patients with LN metastasis show higher NADK expression than those without LN metastasis. NADK can promote NSCLC progression by enhancing the migration, invasion, lymph node metastasis and growth of NSCLC cells. Mechanistically, NADK inhibits the ubiquitination and degradation of BMPR1A by interacting with Smurf1, further activating the BMPs signalling pathway and promoting ID1 transcription. In conclusion, NADK may be a potential diagnostic indicator and a novel therapeutic target for metastatic NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , NAD/metabolismo , Metástase Linfática , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo
5.
Int J Biol Sci ; 19(4): 1110-1122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923932

RESUMO

Inflammation and metabolic reprogramming are hallmarks of cancer. How inflammation regulates cancer metabolism remains poorly understood. In this study, we found that 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL), the enzyme that catalyzes the catabolism of leucine and promotes the synthesis of ketone bodies, was downregulated in lung cancer. Downregulation of HMGCL was associated with a larger tumor size and a shorter overall survival time. In a functional study, overexpression of HMGCL increased the content of ß-hydroxybutyrate (ß-HB) and inhibited the tumorigenicity of lung cancer cells, and deletion of HMGCL promoted de novo tumorigenesis in KP (KrasG12D;P53f/f) mice. Mechanistically, tumor necrosis factor α (TNFα) treatment decreased the HMGCL protein level, and IKKß interacted with HMGCL and phosphorylated it at Ser258, which destabilized HMGCL. Moreover, NEDD4 was identified as the E3 ligase for HMGCL and promoted its degradation. In addition, mutation of Ser258 to alanine inhibited the ubiquitination of HMGCL by NEDD4 and thus inhibited the anchorage-independent growth of lung cancer cells more efficiently than did wild-type HMGCL. In summary, this study demonstrated a link between TNFα-mediated inflammation and cancer metabolism.


Assuntos
Neoplasias Pulmonares , Liases , Animais , Camundongos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/genética , Neoplasias Pulmonares/genética , Liases/genética , Liases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Cell Death Dis ; 13(6): 566, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739087

RESUMO

The availability of asparagine is the limitation of cell growth and metastasis. Asparagine synthetase (ASNS) was an essential enzyme for endogenous asparagine products. In our study, ASNS-induced asparagine products were essential to maintain tumor growth and colony formations in vitro. But mutated ASNS which defected endogenous asparagine products still upregulated cell invasiveness, which indicated that ASNS promoted invasiveness by alternative pathways. Mechanically, ASNS modulated Wnt signal transduction by promoting GSK3ß phosphorylation on ser9 and stabilizing the ß-catenin complex, as result, ASNS could promote more ß-catenin translocation into nucleus independent of endogenous asparagine. At the same time, ASNS modulated mitochondrial response to Wnt stimuli with increased mitochondrial potential and membrane fusion. In summary, ASNS promoted metastasis depending on Wnt pathway and mitochondrial functions even without endogenous asparagine products.


Assuntos
Aspartato-Amônia Ligase , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Neoplasias Pulmonares , Asparagina/genética , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Linhagem Celular Tumoral , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , beta Catenina/genética
8.
Int J Biol Sci ; 18(4): 1539-1554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280671

RESUMO

Hyperactivation of Wnt/ß-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms underlying the hyperactivation of Wnt/ß-catenin signaling are incompletely understood. In this study, Pantothenate kinase 1 (PANK1) is shown to be a negative regulator of Wnt/ß-catenin signaling. Downregulation of PANK1 in HCC correlates with clinical features. Knockdown of PANK1 promotes the proliferation, growth and invasion of HCC cells, while overexpression of PANK1 inhibits the proliferation, growth, invasion and tumorigenicity of HCC cells. Mechanistically, PANK1 binds to CK1α, exerts protein kinase activity and cooperates with CK1α to phosphorylate N-terminal serine and threonine residues in ß-catenin both in vitro and in vivo. Additionally, the expression levels of PANK1 and ß-catenin can be used to predict the prognosis of HCC. Collectively, the results of this study highlight the crucial roles of PANK1 protein kinase activity in inhibiting Wnt/ß-catenin signaling, suggesting that PANK1 is a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Invasividade Neoplásica , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Quinases/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Oncogene ; 41(16): 2390-2403, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277657

RESUMO

Breast cancer stem cells (BCSCs) are the main drivers of recurrence and metastasis. However, commonly used drugs rarely target BCSCs. Via screenings, we found that Salt-inducible kinase 2 (SIK2) participated in breast cancer (BC) stemness maintenance and zebrafish embryos development. SIK2 was upregulated in recurrence samples. Knockdown of SIK2 expression reduced the proportion of BCSCs and the tumor initiation of BC cells. Mechanistically, SIK2, phosphorylated by CK1α, directly phosphorylated LRP6 in a SIK2 kinase activity-dependent manner, leading to Wnt/ß-catenin signaling pathway activation. ARN-3236 and HG-9-91-01, inhibitors of SIK2, inhibited LRP6 phosphorylation and ß-catenin accumulation and disturbed stemness maintenance. In addition, the SIK2-activated Wnt/ß-catenin signaling led to induction of IDH1 expression, causing metabolic reprogramming in BC cells. These findings demonstrate a novel mechanism whereby Wnt/ß-catenin signaling pathway is regulated by different kinases in response to metabolic requirement of CSCs, and suggest that SIK2 inhibition may potentially be a strategy for eliminating BCSCs.


Assuntos
Neoplasias da Mama , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas Serina-Treonina Quinases , Via de Sinalização Wnt , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
10.
Int J Biol Sci ; 18(3): 1288-1302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173553

RESUMO

NF-κB signaling is active in more than 50% of patients with pancreatic cancer and plays an important role in promoting the progression of pancreatic cancer. Revealing the activation mechanism of NF-κB signaling is important for the treatment of pancreatic cancer. In this study, the regulation of TNFα/NF-κB signaling by VRK2 (vaccinia-related kinase 2) was investigated. The levels of VRK2 protein were examined by immunohistochemistry (IHC). The functions of VRK2 in the progression of pancreatic cancer were examined using CCK8 assay, anchorage-independent assay, EdU assay and tumorigenesis assay. The regulation of VRK2 on the NF-κB signaling was investigated by immunoprecipitation and invitro kinase assay. It was discovered in this study that the expression of VRK2 was upregulated in pancreatic cancer and that the VRK2 expression level was significantly correlated with the pathological characteristics and the survival time of patients. VRK2 promoted the growth, sphere formation and subcutaneous tumorigenesis of pancreatic carcinoma cells as well as the organoid growth derived from the pancreatic cancer mouse model. Investigation of the molecular mechanism indicated that VRK2 interacts with IKKß, phosphorylating its Ser177 and Ser181 residues and thus activating the TNFα/NF-κB signaling pathway. An IKKß inhibitors abolished the promotive effect of VRK2 on the growth of organoids. The findings of this study indicate that VRK2 promotes the progression of pancreatic cancer by activating the TNFα/NF-κB signaling pathway, suggesting that VRK2 is a potential therapeutic target for pancreatic cancer.


Assuntos
Quinase I-kappa B , Neoplasias Pancreáticas , Animais , Carcinogênese , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/genética , Fosforilação , Proteínas Serina-Treonina Quinases , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Pancreáticas
11.
Cancer Res ; 82(5): 791-804, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987057

RESUMO

ARID1A is a key mammalian SWI/SNF complex subunit that is mutated in 5% to 11% of lung cancers. Although recent studies have elucidated the mechanism underlying dysregulation of the switch/sucrose non-fermentable (SWI/SNF) complexes in cancers, the significance of ARID1A loss and its implications in lung cancers remain poorly defined. This study investigates how ARID1A loss affects initiation and progression of lung cancer. In genetically engineered mouse models bearing mutant Kras and a deficient Trp53 allele (KP), ARID1A loss (KPA) promoted lung tumorigenesis. Analysis of the transcriptome profiles of KP and KPA tumors suggested enhanced glycolysis following ARID1A loss, and expression of the glycolytic regulators Pgam1, pyruvate kinase M (Pkm), and Pgk1 was significantly increased in ARID1A-deficient lung tumors. Furthermore, ARID1A loss increased chromatin accessibility and enhanced hypoxia-inducible factor-1α (HIF1α) binding to the promoter regions of Pgam1, Pkm, and Pgk1. Loss of ARID1A in lung adenocarcinoma also resulted in loss of histone deacetylase 1 (HDAC1) recruitment, increasing acetylation of histone-4 lysine at the promoters of Pgam1, Pkm, and Pgk1, and subsequently enhancing BRD4-driven transcription of these genes. Metabolic analyses confirmed that glycolysis is enhanced in ARID1A-deficient tumors, and genetic or pharmacologic inhibition of glycolysis inhibited lung tumorigenesis in KPA mice. Treatment with the small molecule bromodomain and extraterminal protein (BET) inhibitor JQ1 compromised both initiation and progression of ARID1A-deficient lung adenocarcinoma. ARID1A negatively correlated with glycolysis-related genes in human lung adenocarcinoma. Overall, ARID1A loss leads to metabolic reprogramming that supports tumorigenesis but also confers a therapeutic vulnerability that could be harnessed to improve the treatment of ARID1A-deficient lung cancer. SIGNIFICANCE: This study links ARID1A loss with enhanced glycolysis in lung cancer and demonstrates the preclinical efficacy of BET inhibitor therapy as a strategy to combat tumor growth.


Assuntos
Adenocarcinoma de Pulmão , Proteínas de Ligação a DNA , Neoplasias Pulmonares , Fatores de Transcrição , Adenocarcinoma de Pulmão/genética , Animais , Carcinogênese/genética , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Glicólise/genética , Humanos , Neoplasias Pulmonares/genética , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética
12.
Cancer Res ; 82(1): 60-74, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764205

RESUMO

Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/ß-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/ß-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/ß-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, whereas overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and to promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3ß to promote ß-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of ß-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. In addition, expression levels of NME7, ß-catenin, and MTHFD2 correlated with each other and with poor prognosis in patients with HCC. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/ß-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC. SIGNIFICANCE: The identification of NME7 as an activator of Wnt/ß-catenin signaling and MTHFD2 expression in HCC reveals a mechanism regulating one-carbon metabolism and potential therapeutic strategies for treating this disease.


Assuntos
Carbono/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Núcleosídeo-Difosfato Quinase/metabolismo , Proteínas Quinases/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia
13.
Cancer Biol Med ; 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33710818

RESUMO

OBJECTIVE: FGFR is considered an important driver gene of lung squamous cell carcinoma (LSCC). Thus, identification of the biological events downstream of FGFR is important for the treatment of this malignancy. Our previous study has shown that the FGFR/RACK1 complex interacts with PKM2 and consequently promotes glycolysis in LSCC cells. However, the biological functions of the FGFR/RACK1 complex remain poorly understood. METHODS: Anchorage-independent assays and in vivo tumorigenesis assays were performed to evaluate cancer cell malignancy. Distant seeding assays were performed to evaluate cancer cell metastasis. ß-gal staining was used to examine cell senescence, and immunoprecipitation assays were performed to examine the interactions among FGFR, RACK1, and MDM2. RESULTS: FGFR/RACK1 was found to regulate the senescence of LSCC cells. Treatment with PD166866, an inhibitor of FGFR, or knockdown of RACK1 induced senescence in LSCC cells (P < 0.01). A molecular mechanistic study showed that FGFR/RACK1/MDM2 form a complex that promotes the degradation of p53 and thus inhibits cell senescence. PD166866 and RG7112, an MDM2/p53 inhibitor, cooperatively inhibited the colony formation and distal seeding of LSCC cells (P < 0.01), and upregulated the expression of p53 and p21. CONCLUSIONS: Together, our findings revealed the regulatory roles and mechanisms of FGFR/RACK1 in cell senescence. This understanding should be important in the treatment of LSCC.

14.
Front Genet ; 12: 763636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047000

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous malignancy. Single-cell sequencing (scRNA-seq) technology enables quantitative gene expression measurements that underlie the phenotypic diversity of cells within a tumor. By integrating PDAC scRNA-seq and bulk sequencing data, we aim to extract relevant biological insights into the ductal cell features that lead to different prognoses. Firstly, differentially expressed genes (DEGs) of ductal cells between normal and tumor tissues were identified through scRNA-seq data analysis. The effect of DEGs on PDAC survival was then assessed in the bulk sequencing data. Based on these DEGs (LY6D, EPS8, DDIT4, TNFSF10, RBP4, NPY1R, MYADM, SLC12A2, SPCS3, NBPF15) affecting PDAC survival, a risk score model was developed to classify patients into high-risk and low-risk groups. The results showed that the overall survival was significantly longer in the low-risk group (p < 0.05). The model also revealed reliable predictive power in different subgroups of patients. The high-risk group had a higher tumor mutational burden (TMB) (p < 0.05), with significantly higher mutation frequencies in KRAS and ADAMTS12 (p < 0.05). Meanwhile, the high-risk group had a higher tumor stemness score (p < 0.05). However, there was no significant difference in the immune cell infiltration scores between the two groups. Lastly, drug candidates targeting risk model genes were identified, and seven compounds might act against PDAC through different mechanisms. In conclusion, we have developed a validated survival assessment model, which acted as an independent risk factor for PDAC.

15.
J Cell Mol Med ; 25(4): 2163-2175, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33345387

RESUMO

Pancreatic cancer is a highly malignant tumour of the digestive tract which is difficult to diagnose and treat. Approximately 90% of cases arise from ductal adenocarcinoma of the glandular epithelium. The morbidity and mortality of the disease have increased significantly in recent years. Its 5-year survival rate is <1% and has one of the worst prognoses amongst malignant tumours. Pancreatic cancer has a low rate of early-stage diagnosis, high surgical mortality and low cure rate. Selenium compounds produced by selenoamino acid metabolism may promote a large amount of oxidative stress and subsequent unfolded reactions and endoplasmic reticulum stress by consuming the NADPH in cells, and eventually lead to apoptosis, necrosis or necrotic cell death. In this study, we first identified DIAPH3 as a highly expressed protein in the tissues of patients with pancreatic cancer, and confirmed that DIAPH3 promoted the proliferation, anchorage-independent growth and invasion of pancreatic cancer cells using overexpression and interference experiments. Secondly, bioinformatics data mining showed that the potential proteins interacted with DIAPH3 were involved in selenoamino acid metabolism regulation. Selenium may be incorporated into selenoprotein synthesis such as TrxR1 and GPX4, which direct reduction of hydroperoxides or resist ferroptosis, respectively. Our following validation confirmed that DIAPH3 promoted selenium content and interacted with the selenoprotein RPL6, a ribosome protein subunit involved in selenoamino acid metabolism. In addition, we verified that DIAPH3 could down-regulate cellular ROS level via up-regulating TrxR1 expression. Finally, nude mice xenograft model experimental results demonstrate DIAPH3 knock down could decrease tumour growth and TrxR1 expression and ROS levels in vivo. Collectively, our observations indicate DIAPH3 could promote pancreatic cancer progression by activating selenoprotein TrxR1-mediated antioxidant effects.


Assuntos
Antioxidantes/metabolismo , Forminas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Selenoproteínas/metabolismo , Tiorredoxina Redutase 1/metabolismo , Aminoácidos , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Forminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Espécies Reativas de Oxigênio/metabolismo
16.
Front Oncol ; 10: 1166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850334

RESUMO

N6-methyladenosine (m6A) modification has been reported as a critical regulator of gene transcript expression. Although m6A modification plays important roles in tumor development, its role in therapeutic resistance remains unknown. In this study, we aimed to examine the expression level of m6A-modification related proteins and elucidate the effect of m6A-related proteins on radiation response in nasopharyngeal carcinoma (NPC). Among the genes that participated in m6A modification, YTHDC2, a m6A reader, was found to be consistently highly expressed in radioresistant NPC cells. Knocking down of YTHDC2 expression in radioresistant NPC cells improved the therapeutic effect of radiotherapy in vitro and in vivo, whereas overexpression of YTHDC2 in radiosensitive NPC cells exerted an opposite effect. Bioinformatics and mechanistic studies revealed that YTHDC2 could physically bound to insulin-like growth factor 1 receptor (IGF1R) messenger RNA and promoted translation initiation of IGF1R mRNA, which in turn activated the IGF1R-AKT/S6 signaling pathway. Thus, the present study suggests that YTHDC2 promotes radiotherapy resistance of NPC cells by activating the IGF1R/ATK/S6 signaling axis and may serve as a potential therapeutic target in radiosensitization of NPC cells.

17.
Cancer Biol Med ; 17(2): 328-342, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32587772

RESUMO

Objectives: Improper activation of Wnt/ß-catenin signaling has been implicated in human diseases. Beyond the well-studied glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1 (CK1), other kinases affecting Wnt/ß-catenin signaling remain to be defined. Methods:To identify the kinases that modulate Wnt/ß-catenin signaling, we applied a kinase small interfering RNA (siRNA) library screen approach. Luciferase assays, immunoblotting, and real-time polymerase chain reaction (PCR) were performed to confirm the regulation of the Wnt/ß-catenin signaling pathway by cyclin-dependent kinase 11 (CDK11) and to investigate the underlying mechanism. Confocal immunofluorescence, coimmunoprecipitation (co-IP), and scratch wound assays were used to demonstrate colocalization, detect protein interactions, and explore the function of CDK11. Results: CDK11 was found to be a significant candidate kinase participating in the negative control of Wnt/ß-catenin signaling. Down-regulation of CDK11 led to the accumulation of Wnt/ß-catenin signaling receptor complexes, in a manner dependent on intact adenomatosis polyposis coli (APC) protein. Further analysis showed that CDK11 modulation of Wnt/ß-catenin signaling engaged the endolysosomal machinery, and CDK11 knockdown enhanced the colocalization of Wnt/ß-catenin signaling receptor complexes with early endosomes and decreased colocalization with lysosomes. Mechanistically, CDK11 was found to function in Wnt/ß-catenin signaling by regulating microtubule stability. Depletion of CDK11 down-regulated acetyl-α-tubulin. Moreover, co-IP assays demonstrated that CDK11 interacts with the α-tubulin deacetylase SIRT2, whereas SIRT2 down-regulation in CDK11-depleted cells reversed the accumulation of Wnt/ß-catenin signaling receptor complexes. CDK11 was found to suppress cell migration through altered Wnt/ß-catenin signaling. Conclusions: CDK11 is a negative modulator of Wnt/ß-catenin signaling that stabilizes microtubules, thus resulting in the dysregulation of receptor complex trafficking from early endosomes to lysosomes.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Regulação para Baixo , Endossomos/metabolismo , Microtúbulos/metabolismo , Proteína da Polipose Adenomatosa do Colo , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Endossomos/genética , Humanos , Luciferases/análise , Luciferases/genética , Microtúbulos/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proteínas Wnt , Via de Sinalização Wnt , beta Catenina
18.
Cell Rep ; 28(5): 1136-1143.e4, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365859

RESUMO

Radiation resistance is a critical problem in radiotherapy for cancer. Radiation kills tumor cells mainly through causing DNA damage. Thus, efficiency of DNA damage repair is one of the most important factors that limits radiotherapy efficacy. Glutamine physiologically functions to generate protein and nucleotides. Here, we study the impact of glutamine metabolism on cancer therapeutic responses, in particular under irradiation-induced stress. We show that radiation-resistant cells possessed low glycolysis, mitochondrial respiration, and TCA cycle but high glutamine anabolism. Transcriptome analyses revealed that glutamine synthetase (GS), an enzyme catalyzing glutamate and ammonia to glutamine, was responsible for the metabolic alteration. ChIP and luciferase reporter assays revealed that GS could be transcriptionally regulated by STAT5. Knockdown of GS delayed DNA repair, weakened nucleotide metabolism, and enhanced radiosensitivity both in vitro and in vivo. Our data show that GS links glutamine metabolism to radiotherapy response through fueling nucleotide synthesis and accelerating DNA repair.


Assuntos
Dano ao DNA , Reparo do DNA , Glutamato-Amônia Ligase/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Tolerância a Radiação , Animais , Linhagem Celular Tumoral , Glutamato-Amônia Ligase/genética , Glutamina/genética , Glutamina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/genética , Neoplasias/genética , Nucleotídeos/genética
19.
Front Oncol ; 9: 369, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143705

RESUMO

Intrahepatic cholangiocarcinoma (ICC) ranks as the second most malignant type of primary liver cancer with a high degree of incidence and a very poor prognosis. Fat mass and obesity-associated protein (FTO) functions as an eraser of the RNA m6A modification, but its roles in ICC tumorigenesis and development remain unknown. We showed here that the protein level of FTO was downregulated in clinical ICC samples and cell lines and that FTO expression was inversely correlated with the expression of CA19-9 and micro-vessel density (MVD). A Kaplan-Meier survival analysis showed that a low expression of FTO predicted poor prognosis in ICC. in vitro, decreased endogenous expression of FTO obviously reduced apoptosis of ICC cells. Moreover, FTO suppressed the anchorage-independent growth and mobility of ICC cells. Through mining the database, FTO was found to regulate the integrin signaling pathway, inflammation signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway, angiogenesis, and the pyrimidine metabolism pathway. RNA decay assay showed that oncogene TEAD2 mRNA stability was impaired by FTO. In addition, the overexpression of FTO suppressed tumor growth in vivo. In conclusion, our study demonstrated the critical roles of FTO in ICC.

20.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1201-1213, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30659926

RESUMO

Viral noncoding RNAs (Epstein-Barr virus-encoded RNAs, EBERs) are believed to play a critical role in the progression of lymphoma and nasopharyngeal carcinoma (NPC). However, the accurate mechanisms accounting for their oncogenic function have not been elucidated, especially in terms of interaction between tumor cells and mesenchymal cells. Here, we report that, in addition to NPC cells, EBERs are also found in endothelial cells in Epstein-Barr virus (EBV)-infected NPC parenchymal tissues, which implicates NPC-derived extracellular vesicles (EVs) in transmitting EBERs to endothelial cells. In support of this hypothesis, we first ascertained if EBERs could be transferred to endothelial cells via EVs isolated from NPC culture supernatant. Then, we clarified that EVs-derived EBERs could promote angiogenesis through stimulation of VCAM-1 expression. Finally, we explored the involvement of EBER recognition by TLR3 and RIG-I in NPC angiogenesis. Our observations collectively illustrate the significance and mechanism of EVs-derived EBERs in angiogenesis and underlie the interaction mechanisms between EBV-infected NPC cells and the tumor microenvironment.


Assuntos
Proteína DEAD-box 58/genética , Vesículas Extracelulares/genética , Herpesvirus Humano 4/genética , RNA não Traduzido/genética , Receptor 3 Toll-Like/genética , Molécula 1 de Adesão de Célula Vascular/genética , Capilares/metabolismo , Capilares/virologia , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Herpesvirus Humano 4/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Neovascularização Patológica/genética , Neovascularização Patológica/virologia , RNA Viral/genética , Receptores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA