Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2313835120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971402

RESUMO

The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short ß-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Glutamina , Glutamina/metabolismo , Ativação Transcricional , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Sítios de Ligação , Ligação Proteica/fisiologia
2.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745474

RESUMO

The ancient, inorganic biopolymer polyphosphate (polyP) occurs in all three domains of life and affects myriad cellular processes. An intriguing feature of polyP is its frequent proximity to chromatin, and in the case of many bacteria, its occurrence in the form of magnesium-enriched condensates embedded in the nucleoid, particularly in response to stress. The physical basis of the interaction between polyP and DNA, two fundamental anionic biopolymers, and the resulting effects on the organization of both the nucleoid and polyP condensates remain poorly understood. Given the essential role of magnesium ions in the coordination of polymeric phosphate species, we hypothesized that a minimal system of polyP, magnesium ions, and DNA (polyP-Mg2+-DNA) would capture key features of the interplay between the condensates and bacterial chromatin. We find that DNA can profoundly affect polyP-Mg2+ coacervation even at concentrations several orders of magnitude lower than found in the cell. The DNA forms shells around polyP-Mg2+ condensates and these shells show reentrant behavior, primarily forming in the concentration range close to polyP-Mg2+ charge neutralization. This surface association tunes both condensate size and DNA morphology in a manner dependent on DNA properties, including length and concentration. Our work identifies three components that could form the basis of a central and tunable interaction hub that interfaces with cellular interactors. These studies will inform future efforts to understand the basis of polyP granule composition and consolidation, as well as the potential capacity of these mesoscale assemblies to remodel chromatin in response to diverse stressors at different length and time scales.

3.
Nat Commun ; 14(1): 4159, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443171

RESUMO

Ebola virus (EBOV) infection induces the formation of membrane-less, cytoplasmic compartments termed viral factories, in which multiple viral proteins gather and coordinate viral transcription, replication, and assembly. Key to viral factory function is the recruitment of EBOV polymerase, a multifunctional machine that mediates transcription and replication of the viral RNA genome. We show that intracellularly reconstituted EBOV viral factories are biomolecular condensates, with composition-dependent internal exchange dynamics that likely facilitates viral replication. Within the viral factory, we found the EBOV polymerase clusters into foci. The distance between these foci increases when viral replication is enabled. In addition to the typical droplet-like viral factories, we report the formation of network-like viral factories during EBOV infection. Unlike droplet-like viral factories, network-like factories are inactive for EBOV nucleocapsid assembly. This unique view of EBOV propagation suggests a form-to-function relationship that describes how physical properties and internal structures of biomolecular condensates influence viral biogenesis.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Compartimentos de Replicação Viral , Transcrição Gênica , Replicação Viral , Nucleotidiltransferases/genética
4.
Biomolecules ; 13(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671536

RESUMO

Biomolecular condensation and phase separation are increasingly understood to play crucial roles in cellular compartmentalization and spatiotemporal regulation of cell machinery implicated in function and pathology. A key aspect of current research is to gain insight into the underlying physical mechanisms of these processes. Accordingly, concepts of soft matter and polymer physics, the thermodynamics of mixing, and material science have been utilized for understanding condensation mechanisms of multivalent macromolecules resulting in viscoelastic mesoscopic supramolecular assemblies. Here, we focus on two topological concepts that have recently been providing key mechanistic understanding in the field. First, we will discuss how percolation provides a network-topology-related framework that offers an interesting paradigm to understand the complex networking of dense 'connected' condensate structures and, therefore, their phase behavior. Second, we will discuss the idea of entanglement as another topological concept that has deep roots in polymer physics and important implications for biomolecular condensates. We will first review some historical developments and fundamentals of these concepts, then we will discuss current advancements and recent examples. Our discussion ends with a few open questions and the challenges to address them, hinting at unveiling fresh possibilities for the modification of existing knowledge as well as the development of new concepts relevant to condensate science.


Assuntos
Polímeros , Termodinâmica
5.
FEBS Lett ; 597(7): 917-932, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36480418

RESUMO

The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Zíper de Leucina/genética , DNA/metabolismo
6.
J Phys Chem B ; 126(46): 9715-9725, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36378781

RESUMO

RNA-RNA interactions have increasingly been recognized for their potential to shape the mesoscale properties of biomolecular condensates, influencing morphology, organization, and material state through networking interactions. While most studies have focused on networking via Watson-Crick base pairing interactions, previous work has suggested a potential for noncanonical RNA-RNA interactions to also give rise to condensation and alter overall material state. Here, we test the phase separation of short polyA RNA (polyrA) homopolymers. We discover and characterize the potential for short polyrA sequences to form RNA condensates at lower Mg2+ concentrations than previously observed, which appear as internally arrested droplets with slow polyrA diffusion despite continued fusion. Our work also reveals a negative cooperativity effect between the effects of Mg2+ and Na+ on polyrA condensation. Finally, we observe that polyrA sequences can act as promoters of phase separation in mixed sequences. These results demonstrate the potential for noncanonical interactions to act as networking stickers, leading to specific condensation properties inherent to polyrA composition and structure, with implications for the fundamental physical chemistry of the system and function of polyA RNA in biology.


Assuntos
RNA , Pareamento de Bases , RNA/química , RNA Mensageiro
8.
J Mol Biol ; 434(1): 167348, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34767801

RESUMO

The emergence of biomolecular condensation and liquid-liquid phase separation (LLPS) introduces a new layer of complexity into our understanding of cell and molecular biology. Evidence steadily grows indicating that condensates are not only implicated in physiology but also human disease. Macro- and mesoscale characterization of condensates as a whole have been instrumental in understanding their biological functions and dysfunctions. By contrast, the molecular level characterization of condensates and how condensates modify the properties of the molecules that constitute them thus far remain comparably scarce. In this minireview we summarize and discuss the findings of several recent studies that have focused on structure, dynamics, and interactions of proteins undergoing condensation. The mechanistic insights they provide help us identify the relevant properties nature and scientists can leverage to modulate the behavior of condensate systems. We also discuss the unique environment of the droplet surface and speculate on effects of topological constraints and physical exclusion on condensate properties.


Assuntos
Condensados Biomoleculares/química , Proteínas/química , Condensados Biomoleculares/metabolismo , Fenômenos Biofísicos , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Nucleofosmina/química , Nucleofosmina/metabolismo , Conformação Proteica , Proteínas/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
9.
Elife ; 102021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779550

RESUMO

Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Imagem Individual de Molécula/métodos , Biologia Molecular/instrumentação , Imagem Individual de Molécula/instrumentação
10.
Cell ; 181(2): 228-230, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302565

RESUMO

Cellular liquid-liquid phase separation (LLPS) plays a key role in the dynamics and function of RNA-protein condensates like stress granules. In this issue of Cell, Yang et al., Guillén-Boixet et al., and Sanders et al. use a combination of experiment and modeling to provide an exciting mechanistic insight into the relationship between stress granules and LLPS, for example, in the context of protein disorder, switchable interactions, graph theory, and multiple interacting dense phases.


Assuntos
Organelas , RNA , Proteínas
11.
Curr Protoc Chem Biol ; 12(1): e80, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32159932

RESUMO

Over the past few decades, numerous examples have demonstrated that intrinsic disorder in proteins lies at the heart of many vital processes, including transcriptional regulation, stress response, cellular signaling, and most recently protein liquid-liquid phase separation. The so-called intrinsically disordered proteins (IDPs) involved in these processes have presented a challenge to the classic protein "structure-function paradigm," as their functions do not necessarily involve well-defined structures. Understanding the mechanisms of IDP function is likewise challenging because traditional structure determination methods often fail with such proteins or provide little information about the diverse array of structures that can be related to different functions of a single IDP. Single-molecule fluorescence methods can overcome this ensemble-average masking, allowing the resolution of subpopulations and dynamics and thus providing invaluable insights into IDPs and their function. In this protocol, we describe a ratiometric single-molecule Förster resonance energy transfer (smFRET) routine that permits the investigation of IDP conformational subpopulations and dynamics. We note that this is a basic protocol, and we provide brief information and references for more complex analysis schemes available for in-depth characterization. This protocol covers optical setup preparation and protein handling and provides insights into experimental design and outcomes, together with background information about theory and a brief discussion of troubleshooting. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Ratiometric smFRET detection and analysis of IDPs Support Protocol 1: Fluorophore labeling of a protein through maleimide chemistry Support Protocol 2: Sample chamber preparation Support Protocol 3: Determination of direct excitation of acceptor by donor excitation and leakage of donor emission to acceptor emission channel.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Intrinsicamente Desordenadas/análise , Proteínas Intrinsicamente Desordenadas/química , Imagem Individual de Molécula/métodos , Corantes Fluorescentes/análise , Conformação Proteica
12.
Sci Rep ; 9(1): 12161, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434954

RESUMO

Liquid-liquid phase separation (LLPS) of RNA-protein complexes plays a major role in the cellular function of membraneless organelles (MLOs). MLOs are sensitive to changes in cellular conditions, such as fluctuations in cytoplasmic ion concentrations. To investigate the effect of these changes on MLOs, we studied the influence of divalent cations on the physical and chemical properties of RNA coacervates. Using a model system comprised of an arginine-rich peptide and RNA, we predicted and observed that variations in signaling cations exert interaction-dependent effects on RNA LLPS. Changing the ionic environment has opposing effects on the propensity for heterotypic peptide-RNA and homotypic RNA LLPS, which results in a switch between coacervate types. Furthermore, divalent ion variations continuously tune the microenvironments and fluid properties of heterotypic and homotypic droplets. Our results may provide a general mechanism for modulating the biochemical environment of RNA coacervates in a cellular context.


Assuntos
Peptídeos/metabolismo , RNA/metabolismo , Sequência de Aminoácidos , Arginina/química , Cátions Bivalentes/química , Recuperação de Fluorescência Após Fotodegradação , Magnésio/química , Microscopia de Fluorescência , Nefelometria e Turbidimetria , Peptídeos/química , Poli U/química , Poli U/metabolismo , Ligação Proteica , RNA/química
13.
Biochim Biophys Acta Proteins Proteom ; 1867(10): 980-987, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31054969

RESUMO

Intrinsically disordered proteins (IDPs) are ubiquitous in proteomes and serve in a range of cellular functions including signaling, regulation, transport and enzyme function. IDP misfunction and aggregation are also associated with several diseases including neurodegenerative diseases and cancer. During the past decade, single-molecule methods have become popular for detailed biophysical and structural studies of these complex proteins. This work has included recent applications to cellular liquid-liquid phase separation (LLPS), relevant for functional dynamics of membraneless organelles such as the nucleolus and stress granules. In this concise review, we cover the conceptual motivations for development and application of single-molecule fluorescence methods for such IDP studies. We follow with a few key examples of systems and biophysical problems that have been addressed, and conclude with thoughts for emerging and future directions.


Assuntos
Nucléolo Celular , Grânulos Citoplasmáticos , Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Animais , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Imagem Molecular
14.
Chemistry ; 25(22): 5600-5610, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30589142

RESUMO

Compartmentalization of biochemical processes is essential for cell function. Although membrane-bound organelles are well studied in this context, recent work has shown that phase separation is a key contributor to cellular compartmentalization through the formation of liquid-like membraneless organelles (MLOs). In this Minireview, the key mechanistic concepts that underlie MLO dynamics and function are first briefly discussed, including the relevant noncovalent interaction chemistry and polymer physical chemistry. Next, a few examples of MLOs and relevant proteins are given, along with their functions, which highlight the relevance of the above concepts. The developing area of active matter and non-equilibrium systems, which can give rise to unexpected effects in fluctuating cellular conditions, are also discussed. Finally, our thoughts for emerging and future directions in the field are discussed, including in vitro and in vivo studies of MLO physical chemistry and function.

16.
Cell Chem Biol ; 25(6): 797-801.e4, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29681525

RESUMO

Single-molecule fluorescence is widely used to study conformational complexity in proteins, and has proven especially valuable with intrinsically disordered proteins (IDPs). Protein studies using dual-color single-molecule Förster resonance energy transfer (smFRET) are now quite common, but many could benefit from simultaneous measurement of multiple distances through multi-color labeling. Such studies, however, have suffered from limitations in site-specific incorporation of more than two dyes per polypeptide. Here we present a fully site-specific three-color labeling scheme for α-synuclein, an IDP with important putative functions and links to Parkinson disease. The convergent synthesis combines native chemical ligation with regiospecific cysteine protection of expressed protein fragments to permit highly controlled labeling via standard cysteine-maleimide chemistry, enabling more global smFRET studies. Furthermore, this modular approach is generally compatible with recombinant proteins and expandable to accommodate even more complex experiments, such as by labeling with additional colors.


Assuntos
Cor , Cisteína/química , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , alfa-Sinucleína/química , Cisteína/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Maleimidas/química , Maleimidas/metabolismo , Conformação Proteica , alfa-Sinucleína/metabolismo
17.
Biochemistry ; 57(17): 2470-2477, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29569441

RESUMO

Compartmentalization of biochemical components, interactions, and reactions is critical for the function of cells. While intracellular partitioning of molecules via membranes has been extensively studied, there has been an expanding focus in recent years on the critical cellular roles and biophysical mechanisms of action of membraneless organelles (MLOs) such as the nucleolus. In this context, a substantial body of recent work has demonstrated that liquid-liquid phase separation plays a key role in MLO formation. However, less is known about MLO dissociation, with phosphorylation being the primary mechanism demonstrated thus far. In this Perspective, we focus on another mechanism for MLO dissociation that has been described in recent work, namely a reentrant phase transition (RPT). This concept, which emerges from the polymer physics field, provides a mechanistic basis for both formation and dissolution of MLOs by monotonic tuning of RNA concentration, which is an outcome of cellular processes such as transcription. Furthermore, the RPT model also predicts the formation of dynamic substructures (vacuoles) of the kind that have been observed in cellular MLOs. We end with a discussion of future directions in terms of open questions and methods that can be used to answer them, including further exploration of RPTs in vitro, in cells, and in vivo using ensemble and single-molecule methods as well as theory and computation. We anticipate that continued studies will further illuminate the important roles of reentrant phase transitions and associated non-equilibrium dynamics in the spatial patterning of the biochemistry and biology of the cell.


Assuntos
Fenômenos Biofísicos , Compartimento Celular/genética , Organelas/genética , Transição de Fase , Citoplasma/química , Citoplasma/genética , Membranas/química , Simulação de Dinâmica Molecular , Organelas/química , Fosforilação
18.
Nat Commun ; 9(1): 842, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483575

RESUMO

Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid-liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes within NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.


Assuntos
Nucléolo Celular/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Nucleares/química , Sítios de Ligação , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Biogênese de Organelas , Transição de Fase , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Eletricidade Estática
19.
Eur Biophys J ; 47(1): 89-94, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29080139

RESUMO

Protein thermodynamic stability is intricately linked to cellular function, and altered stability can lead to dysfunction and disease. The linear extrapolation model (LEM) is commonly used to obtain protein unfolding free energies ([Formula: see text]) by extrapolation of solvent denaturation data to zero denaturant concentration. However, for some proteins, different denaturants result in non-coincident LEM-derived [Formula: see text] values, raising questions about the inherent assumption that the obtained [Formula: see text] values are intrinsic to the protein. Here, we used single-molecule FRET measurements to better understand such discrepancies by directly probing changes in the dimensions of the protein G B1 domain (GB1), a well-studied protein folding model, upon urea and guanidine hydrochloride denaturation. A comparison of the results for the two denaturants suggests denaturant-specific structural energetics in the GB1 denatured ensemble, revealing a role of the denatured state in the variable thermodynamic behavior of proteins.


Assuntos
Proteínas de Bactérias/química , Desnaturação Proteica/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Guanidina/farmacologia , Domínios Proteicos , Termodinâmica , Ureia/farmacologia
20.
Angew Chem Int Ed Engl ; 56(38): 11354-11359, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28556382

RESUMO

Intracellular ribonucleoprotein (RNP) granules are membrane-less droplet organelles that are thought to regulate posttranscriptional gene expression. While liquid-liquid phase separation may drive RNP granule assembly, the mechanisms underlying their supramolecular dynamics and internal organization remain poorly understood. Herein, we demonstrate that RNA, a primary component of RNP granules, can modulate the phase behavior of RNPs by controlling both droplet assembly and dissolution in vitro. Monotonically increasing the RNA concentration initially leads to droplet assembly by complex coacervation and subsequently triggers an RNP charge inversion, which promotes disassembly. This RNA-mediated reentrant phase transition can drive the formation of dynamic droplet substructures (vacuoles) with tunable lifetimes. We propose that active cellular processes that can create an influx of RNA into RNP granules, such as transcription, can spatiotemporally control the organization and dynamics of such liquid-like organelles.


Assuntos
Ribonucleoproteínas/química , Termodinâmica , Tamanho da Partícula , Transição de Fase , RNA/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA